
NFS/RDMA BASICS
Part One – The Whys and Wherefores



THE WHYS AND WHEREFORES

➤ Why RDMA? 

➤ The RDMA Verbs API 

➤ RDMA-enabled storage 
protocols



WHY RDMA?



DMA VERSUS RDMA

➤ Direct Memory Access (DMA) – A device transfers data directly 
to or from host memory 

➤ Remote Direct Memory Access (RDMA) – A device transfers data 
directly between host memory and memory on other hosts on 
a network fabric 

➤ NFS/RDMA enables the data payloads of NFS READ and WRITE 
operations to be transferred between file server and client memory via a 
third party

4



DIRECT DATA PLACEMENT (DDP)

➤ Typical DMA networking 

➤ Data payload alignment can be ideal on the sender 

➤ The receiver often needs to pull-up incoming payloads 

➤ RDMA 

➤ Data payload alignment can be made ideal on both the 
sender and receiver as part of the I/O operation

5



OFFLOADED DATA TRANSFER

➤ Physical HCA 

➤ ULP and HCA driver set up payload transfer 

➤ RNICs move payload bytes 

➤ Neither host CPU needs to touch payload bytes during data 
transfer (important on storage servers, since they are not 
likely to perform any computation on the payload) 

➤ In a VM guest, the hypervisor is not involved in data transfer. 
With SR-IOV, data transfer can be handled safely by hardware.

6



NETWORK PERFORMANCE CURVE

7

InfiniBand technology Effective throughput 
(Gb/s)

Adapter latency 
(microseconds)

Quad Data Rate 32 1.3
FDR10 40 0.7

Fourteen Data Rate 56 0.7
Enhanced Data Rate 100 0.5

PCIe gen 3.0 x16 120
High Data Rate 200



STORAGE PERFORMANCE CURVE

8

Storage technology Relative latency
Hard drive 3000 us
SAS SSD 300 us
PCIe SSD 30 us

Persistent memory 3 us
DRAM 0.3 us



FAST STORAGE AND FAST NETWORKING

➤ Immediate benefits for NFS: 

➤ Lower cache-to-cache transfer latency 

➤ Lower latency of read-only metadata operations 

➤ Better scaling of data throughput to CPU utilization 

➤ Challenges 

➤ The I/O round trip time is now as fast as (or faster than) 
the elapsed CPU time to set it up

9



THE RDMA 
VERBS API 



SOCKETS VERSUS VERBS

➤ A “verb” is implemented in the Linux kernel as a function call 
with standardized behavior and side effects. 

➤ As with sockets, programs use the same API for different 
network fabrics: IB, RoCE, iWARP, Omni-Path. 

➤ RDMA verbs introduce some additional capabilities: 

➤ Asynchrony 

➤ Very low overhead 

➤ Kernel bypass 

➤ Direct data placement

11



VERBS PROVIDERS AND CONSUMERS

➤ Verbs consumer – application software that uses the verbs API 

➤ Also known as an Upper Layer Protocol (ULP) 

➤ Verbs provider – software that exposes the verbs API 

➤ Via a device driver for a specialized hardware 

➤ Via emulation on conventional network devices

12



QUEUE PAIRS

➤ A Queue Pair is a virtual communication port 

➤ Similar to the socket abstraction, but more “hardware-y” 

➤ One QP on each endpoint of a connection 

➤ QP states: init, RTS, error, SQD 

➤ One QP consists of: 

➤ One Send Work Queue – work items are handled in order 

➤ One Receive Work Queue – same order as remote Sends 

➤ Queues contain a fixed number of Work Queue Entries (WQEs)

13



COMPLETION SIGNALING

➤ Work Request (WR) success may be signaled or silent 

➤ WR errors are always reported via a completion 

➤ A Completion Queue notifies ULP of Work Request completions 

➤ Send, RDMA Read or Write, memory registration 

➤ Receive – arrival of channel data 

➤ A CQ is associated with one or more QPs 

➤ CQs contain a fixed number of Completion Queue Entries 
(CQEs)

14



MEMORY PROTECTION

➤ We could allow remotes to have read and write access to all of 
local memory, but this is obviously not desirable in multi-user 
and multi-process OS environments. 

➤ Memory registration is a mechanism that makes a narrow part of 
memory temporarily visible to local and remote HCAs. 

➤ The protection goals are: 

➤ To expose only the part of memory involved in the current 
transaction 

➤ To expose this memory only for the amount of time it takes 
for that transaction to complete

15



MEMORY REGISTRATION AND INVALIDATION

➤ Memory Region – A set of host memory locations that have been 
registered 

➤ Registration – The HCA assigns a memory key with specific access 
rights to a memory region on the local host 

➤ Invalidation – A previously registered memory key and its 
associated access rights are made no longer valid 

➤ Protection Domain – Security context that binds memory regions to 
QPs, controlling HCA access to host memory

16



MEMORY ACCESS RIGHTS

➤ Assigned by registration, revoked by invalidation 

➤ A combination of read, write, local, and remote rights 

➤ Two types of memory keys: 

➤ A local key (Lkey) allows the local HCA to access local 
memory; used for RDMA Send or Receive; not shared with 
other hosts. 

➤ A remote key (Rkey) allows a remote HCA to access local 
memory; used for RDMA Read or Write; shared with other 
hosts.

17



REGISTRATION METHODS IN THE KERNEL

➤ DMA key 

➤ Two keys per protection domain cover all local memory: one 
for local access, one for remote 

➤ Fast Memory Registration (FMR) 

➤ Synchronous verbs: map_phys_mr and unmap_fmr 

➤ FastReg Work Request (FRWR) 

➤ Registration performed by work requests posted on Send 
Queue, thus they complete asynchronously 

➤ FastRegister and LocalInvalidate WRs 

➤ Remote invalidation also supported
18



COMMUNICATION MANAGEMENT

➤ Establish a connection 

➤ Resolve Upper Layer addresses to fabric endpoint addresses 

➤ CREQ, CREP, RTU (ready-to-use) 

➤ Request a service type 

➤ Connected mode: RC, XRC, UC 

➤ Datagram: UD, RD 

➤ Release connection state and resources 

➤ DREQ, DREP

19



CHANNEL SEND AND RECEIVE

➤ RDMA Send 

➤ Transfers data from an untagged local buffer to an arbitrary 
untagged remote buffer 

➤ Completes when local HCA is done with the buffer 

➤ Previously posted operations must not execute after a Send 

➤ RDMA Receive 

➤ Prepares an untagged local buffer to receive ingress Send data 

➤ Completes when local HCA has filled the buffer with data 
sent from a peer 

➤ No co-ordination between Receive and Send

20



RDMA READ

➤ Pulls data from a tagged memory region on a remote host into 
a local memory region 

➤ The Read response, carrying the data, is the remote’s ACK 

➤ Read completion signaled on local host when HCA is finished 
transferring all data in the request 

➤ No completion signaled on remote host (local host must 
notify the remote when it is finished)

21



RDMA READ CAVEATS

➤ HCA has limited Read responder resources 

➤ Only a few Reads maybe be processed at a time 

➤ Less change of overrun 

➤ Remote requires notification when RDMA Reads are complete 
so that memory can be invalidated

22



RDMA WRITE

➤ Pushes data from a local memory region to a tagged memory 
region on a remote host 

➤ Write ACK means that the remote HCA has the data payload. 
Other rules determine when that payload arrives in the 
remote’s memory. 

➤ Write completion is signaled on local host when HCA has 
finished with the Write source buffers 

➤ No completion signaled on remote host (local host must 
notify the remote when it is finished)

23



RDMA WRITE CAVEATS

➤ RDMA Write is “fire and forget.” If there is a problem on the 
receiver, it is reported later. 

➤ RDMA Writes can be streamed with each other or with Send 

➤ No limit on number of outstanding Writes 

➤ But an HCA can be overrun, resulting in global pause 
frames 

➤ Receive completion on remote implies data from previous 
RDMA Writes is placed, and memory can be invalidated

24



ORDERING OF OPERATIONS

➤ Data placement – Writing data into memory. Can occur in any 
order (but before delivery). 

➤ Data delivery – Notifying the ULP that a message is available. 

➤ For example, when the local host posts RDMA Write followed 
by a Send: 

➤ At the local host, a Send completion means previous 
RDMA Writes have also completed. The remote HCA has 
received the payload, but has not written it to memory. 

➤ At the remote host, a Receive completion means previous 
RDMA Writes have been written to memory.

25



REMOTE INVALIDATION

➤ Using a special form of RDMA Send, one side can request that 
a remote HCA perform an invalidation on a memory key 

➤ The RDMA Send request contains an additional header that 
contains an Rkey to be invalidated 

➤ The remote HCA does not have to invalidate that Rkey 

➤ If it does, the Receive completion for that ingress message 
carries the Rkey as notification to the ULP of the 
invalidation. The ULP must not invalidate that Rkey again. 

➤ A remotely invalidated Rkey saves the ULP the cost of 
invalidating that key. DMA unmapping is still required.

26



RDMA-
ENABLED 
STORAGE 

PROTOCOLS



RDMA-ENABLED STORAGE PROTOCOLS

➤ Block protocols 

➤ SRP – SCSI RDMA Protocol (ANSI INCITS 365-2007) 

➤ iSER – iSCSI Extensions for RDMA (RFC 7145) 

➤ NVMe/F – NVM Express over Fabrics (revision 1.3) 

➤ File protocols 

➤ SMB Direct in Windows Server (MS-SMB) 

➤ NFS over RDMA (RFC 5667)

28



TRANSFER MODELS

➤ Read-Read 

➤ Initiator exposes memory 

➤ Target pulls arguments 

➤ Target exposes memory 

➤ Initiator pulls results 

➤ Read-Write 

➤ Initiator exposes memory 

➤ Target pulls arguments, pushes results

29



RDMA READ IN USE

Initiator Fabric Target
Register

RDMA Send Receive ⚡
RDMA Read
⚡

Host processing
Receive ⚡ RDMA Send
Invalidate

⚡

30



RDMA WRITE IN USE

Initiator Fabric Target
Register

RDMA Send Receive ⚡
Host processing 

RDMA Write
Receive ⚡ RDMA Send
Invalidate

⚡

31



THE COST OF MEMORY REGISTRATION

➤ RDMA-enabled storage implementations are all about 
mitigating the cost of registering and invalidating memory 

➤ Sending a request message has to wait for memory 
registration to complete 

➤ An upper layer transaction must not complete until remotely 
exposed memory regions have been invalidated 

➤ Registration costs are amortized with large payloads, but small-
to-moderate I/O resides in a donut hole 

➤ Trade-off between speed of host CPU data copy versus the 
expense of building and tearing down memory registration

32




