
NFS/RDMA BASICS
Part Two – Protocol



PROTOCOL

➤ Overview of RPC-over-RDMA 
version 1 

➤ The NFS Upper Layer Binding 

➤ Wireshark live demo



RPC 
OVER 

RDMA 
OVERVIEW



RPC MESSAGES

➤ An RPC Call: 

➤ Requests work on a remote host 

➤ Consists of one XDR stream containing an RPC Call header 
plus arguments 

➤ An RPC Reply: 

➤ Returns results from a remote host 

➤ Consists of one XDR stream containing an RPC Reply 
header plus results 

➤ A Reply is matched to a Call via the RPC transaction ID

4



REQUESTERS AND RESPONDERS

➤ A requester: 

➤ Hosts an application that drives RPC requests 

➤ Generates RPC transaction IDs 

➤ Sends RPC Calls 

➤ A responder: 

➤ Performs services on behalf of RPC requesters 

➤ Sends RPC Replies 

➤ An RPC client initiates connections to an RPC server 

➤ A client can be either a requester or a responder, etc.

5



DDP-ELIGIBLE DATA ITEMS

➤ Certain XDR data items may be split out, whole, from an RPC 
message’s XDR stream and conveyed using explicit RDMA. I 
call this process reduction. 

➤ These items are not decorated in any way. A specification 
enumerates which items are permitted to be reduced. 

➤ Appropriate data items to make DDP-eligible include 
frequently sent or received items that are large, do not require 
marshaling, and might be sensitive to alignment

6



MAKING MEMORY AVAILABLE FOR RDMA

➤ An RDMA segment is a data structure that represents an 
advertised region of memory, including: 

➤ A memory key 

➤ An offset and length 

➤ Can also include an XDR position 

➤ May be the target of an RDMA Read or Write 

➤ A chunk is a data structure that: 

➤ Is a group of one or more RDMA segments 

➤ Represents exactly one reduced XDR data item 

➤ Including XDR round-up padding is optional
7



THE READ LIST

➤ A Read segment is an RDMA segment that includes an XDR 
position field 

➤ A Read chunk is a list of RDMA segments in the same position 

➤ A Read list contains a list of Read chunks that contain arguments 
the responder should read (pull) from the requester 

➤ Operation 

➤ A requester reduces large DDP-eligible arguments from an 
RPC Call and adds them to the Read list 

➤ The responder uses the Read list to re-assemble the RPC Call 

➤ The responder returns an empty Read list in the corresponding 
RPC Reply 

8



READ LIST GRAPHIC

Position: 96 Key: 0xd9785 Length: 167 Offset: 0x810ae600

Position: 96 Key: 0xf1189b Length: 8192 Offset: 0xffffd000

Position: 96 Key: 0xf1189a Length: 8192 Offset: 0xffffb000

Position: 16600 Key: 0xf1189c Length: 65536 Offset: 0xfffe4000

Position: 16600 Key: 0xf1189d Length: 1023 Offset: 0xffff1400

9



THE WRITE LIST

➤ A Write chunk is an array of plain RDMA segments 

➤ A Write list contains a list of Write chunks that the responder 
should use to write (push) results to the requester 

➤ Operation 

➤ A requester advertises Write chunks when it expects a large 
result. The length of each Write chunk is the maximum size of 
the result. 

➤ The responder writes one DDP-eligible result into each provided 
Write chunk, filling segments contiguously and in order 

➤ The responder reconstructs the Write list when it replies, using 
the actual length of each result.

10



WRITE LIST GRAPHIC

Segments: 4
Key: 0xff7b66 Length: 140 Offset: 0x810ae600
Key: 0xff7b67 Length: 32768 Offset: 0xfffe4000
Key: 0x8145a Length: 196 Offset: 0x810bb220
Key: 0xff7b68 Length: 36 Offset: 0x822e00

Segments: 3
Key: 0xff7b69 Length: 4096 Offset: 0xffbae000

Key: 0xff7b6a Length: 4096 Offset: 0xffbaf000

Key: 0xff7b6b Length: 4096 Offset: 0xffbb0000

11



XDR ROUNDUP

➤ In an XDR stream, variable-length data items require a pad to 
guarantee the next item in the stream starts on a 4-byte 
boundary. 

➤ A reduced data item is no longer part of an XDR stream, 
therefore it does not need padding. 

➤ For a Read chunk, the receiver introduces missing padding as 
it reconstructs the incoming RPC message. 

➤ The length of the result returned in a Write chunk is not 
known in advance. Senders are therefore required not to add 
padding.

12



MESSAGE FRAMING

➤ Each RPC-over-RDMA message requires one RDMA Send 
conveying: 

➤ An XDR stream containing a Transport Header 

➤ None, part, or all of an XDR stream containing an RPC 
message 

➤ Each Transport Header contains: 

➤ Fixed 32-bit fields (XID, version, credits, procedure) 

➤ A Read list 

➤ A Write list 

➤ An optional Reply chunk
13



INLINE THRESHOLD

➤ In preparation to capture ingress Send messages, a receiver 
posts Receive WRs, each of which has a buffer. 

➤ The HCA chooses a buffers arbitrarily to receive each ingress 
Send message. 

➤ The smallest posted Receive buffer on that connection 
determines the largest Send message that can be received 

➤ Typically all Receive buffers are the same size 

➤ The inline threshold is this size limit 

➤ The default is 1KB, but it can be larger

14



CREDIT MANAGEMENT

➤ An HCA cannot receive more Sends than there are posted 
Receive buffers 

➤ The RPC-over-RDMA protocol limits the number of Sends 
a requester can transmit 

➤ Requesters make a credit request in each Call 

➤ This is how many Receive buffers the requester is prepared 
to post 

➤ Responders grant a credit limit in each Reply 

➤ This is how many Receive buffers the responder has posted 

➤ One RPC transaction equals one credit

15



INLINE VERSUS REDUCTION

➤ RPC messages can be sent in full as part of a Send payload 
when they are smaller than the inline threshold 

➤ If the RPC message is large and contains a DDP-eligible data 
item, that item can be reduced and conveyed via RDMA. 

➤ The reduced data item is not sent as part of the XDR stream. 
Part of the RPC message is conveyed via Send, part via 
explicit RDMA 

➤ When an RPC message cannot be reduced, a special chunk is 
used to convey the whole RPC message via explicit RDMA

16



SPECIAL CHUNKS

➤ To convey a large RPC Call message, the requester constructs a 
Read chunk at XDR position zero that conveys the RPC Call 

➤ Also known as a Position Zero Read chunk 

➤ When the requester expects a large RPC Reply message, it 
provides a Reply chunk to the responder which is large enough to 
contain the largest possible RPC Reply 

➤ The responder does not have to use this chunk 

➤ When a special chunk is used, the Send message contains only a 
Transport Header with the chunk information

17



SAMPLE XDR: RDMA_MSG

➤ Pure inline 

➤ X 1 C R 0 0 0 | RPC message 

➤ Call with a Read list 

➤ X 1 C R 1 PHLOO 0 0 0 | Reduced RPC Call message 

➤ Call with a Write list 

➤ X 1 C R 0 1 2 HLOO HLOO 0 0 | RPC Call message 

➤ Call with Reply chunk 

➤ X 1 C R 0 0 1 2 HLOO HLOO | RPC Call message

18



SAMPLE XDR: RDMA_NOMSG

➤ Call with Position Zero Read chunk 

➤ X 1 C 1 1 0 HLOO 1 0 HLOO 0 0 0 

➤ Reply with Reply chunk 

➤ X 1 C 1 0 0 1 2 HLOO HLOO

19



SAMPLE XDR: RDMA_ERR

➤ Reply reporting unsupported RPC-over-RDMA version 

➤ X 1 C 4 1 1 1 

➤ Reply reporting any other error 

➤ X 1 C 4 2

20



GSS CONSIDERATIONS

➤ GSS integrity and privacy cannot use normal chunks: 

➤ The host CPUs are involved in computing the message’s 
MIC or encrypting the message. 

➤ XDR padding is always included in the MIC. 

➤ Therefore krb5i and krb5p requires either pure inline or the 
use of special chunks.

21



NFS UPPER 
LAYER 

BINDING
RFC 5667



THE FOUR DDP-ELIGIBLE DATA ITEMS IN NFS

➤ In all versions of NFS, only four data items are eligible for 
Direct Data Placement: 

➤ The opaque data result of NFS READ 

➤ The pathname result of NFS READLINK 

➤ The opaque data argument of NFS WRITE 

➤ The pathname argument of NFS SYMLINK or 
CREATE(NF4LNK) 

➤ No other argument or result is allowed to use direct data placement

23



NFS READ WITH CHUNKS

➤ NFS client registers memory where file data payload will land 

➤ NFS client Sends an RPC-over-RDMA message containing a 
Write list and an NFS READ Call 

➤ NFS server processes the NFS READ Call 

➤ NFS server registers memory where file data payload resides, 
then posts RDMA Write operations 

➤ NFS server sends RPC-over-RDMA message containing an NFS 
READ Reply 

➤ Receive completion ensures the Write payload is in client’s 
memory 

➤ NFS client invalidates memory containing file data payload
24



NFS WRITE WITH CHUNKS

➤ NFS client registers memory containing file data payload 

➤ NFS client Sends an RPC-over-RDMA message containing a 
Read list and an NFS WRITE Call 

➤ NFS server chooses and registers memory where file data 
payload will land, then posts RDMA Read operations 

➤ NFS client sends RDMA Read data 

➤ NFS server processes the NFS WRITE Call 

➤ NFS server sends RPC-over-RDMA message containing an 
NFS WRITE Reply 

➤ NFS client invalidates memory containing file data

25



REPLY SIZE ESTIMATION

➤ Requesters need to recognize when an RPC can have a Reply 
that is larger than the inline threshold. 

➤ A requester registers memory that can hold the largest 
possible Reply, and constructs a Reply chunk to advertise this 
memory region to the responder. 

➤ Depending on the actual size of the RPC Reply: 

➤ The responder may Send the Reply inline if it’s small 
enough. 

➤ Otherwise the responder uses RDMA Write to push the 
whole RPC Reply to the requester.

26



EXAMPLE USAGE OF REPLY CHUNKS

➤ NFS READDIR 

➤ The Reply size can be estimated 

➤ The Reply is full of small XDR data items that have to be 
marshaled 

➤ NFSv3 GETACL 

➤ The Reply size cannot be precisely estimated 

➤ NFSv4 LOOKUP 

➤ The Reply size may be large if the client has added a 
GETATTR to this compound that requests ACLs or security 
labels

27



NFSV4.1 BACKCHANNEL

➤ The NFS server is a requester; the NFS client is a responder 

➤ Credit accounting has to go both ways 

➤ XID and credit fields in the Transport Header must not be 
interpreted before the message’s direction is ascertained 

➤ Client implementations might not be ready to process chunk 
lists 

➤ NFS CB requests are typically limited to the size of the 
inline threshold

28



WIRESHARK 
LIVE DEMO




