

Slide 1

Public NFS

Brent Callaghan

brent@eng.sun.com

NFS on the Internet: History

NFS does not have a good reputation

- Don't do NFS on the Internet!
- Large (8K) UDP transfers hog bandwidth (bad netiquette)
- No congestion control
- Inefficient error recovery lose one fragment lose 'em all.
- No security
- Use a nice TCP-based protocol like FTP.

10 Years Later

- NFS over TCP is "nice" just like FTP.
 - Congestion control
 - Error recovery
- V3 gives us:
 - Large transfers (no more 8k limit)
 - **READDIRPLUS** (fewer turnarounds)
 - Weak cache consistency (fewer GETATTRs)
- Security still an issue for all Internet protocols
 - Not an issue for archive download (anon FTP)

NFS vs FTP

- Hardly known on Internet
- Efficient in-kernel implementations handle high loads
- Single, persistent TCP connection
- Good for file transfer and file access
- Competitive NFS server market

- Anonymous FTP popular for file download
- User-level daemon fork, data copy, context switch overhead
- Control connection + one connection per file (incoming)
- Transfer of whole files only
- No FTP server competition

Why not use NFS then?

- Firewalls typically block NFS because:
 - NFS uses UDP replay attacks are easy.
 - NFS and MOUNT protocol require negotiated port via portmapper.
 - No security with AUTH_UNIX
- Need to make NFS easier to filter
 - Use TCP
 - Allow mounts without MOUNT protocol
 - Use de-facto port 2049 for NFS service.

Public Filehandle

• Allow one filesystem to be exported with a filehandle already known to clients.

share -o ro,public /export/ftp

- Version 2: filehandle is all zeros.
- Version 3: filehandle is zero length.
- Client can now access this filesystem without using MOUNT protocol.

Multi-component Lookup

- Single component LOOKUP is expensive on WANs.
- Server 10,000 miles away, 100 ms/component.
- LOOKUP relative to public filehandle interpreted as a multi-component lookup.
- Version 2 pathnames limited to 255 characters.
- Pathname syntax determined by server OS as it is for MOUNT protocol.

Multi-component Lookup (cont)

"pub/proj/src/cmd/index.html"

```
LOOKUP F01 "pub" --> <-- FH=F02
```


Example

Read server:/export/foo/bar

```
client -> server
                   PORTMAP C GETPORT prog=100005 (MOUNT) vers=2 proto=UDP
server -> client
                 PORTMAP R GETPORT port=32824
client -> server
                   MOUNT2 C Mount "/export"
server -> client
                  MOUNT2 R Mount OK FH=009A
client -> server
                   PORTMAP C GETPORT prog=100003 (NFS) vers=2 proto=UDP
server -> client
                   PORTMAP R GETPORT port=2049
client -> server
                 NFS C LOOKUP FH=009A "foo"
server -> client
                 NFS R LOOKUP FH=3F05
client -> server
                 NFS C LOOKUP FH=3F05 "bar"
server -> client
                 NFS R LOOKUP FH=03FC
client -> server NFS C READ FH=03FC 0 for 4096
server -> client
                 NFS R READ OK
```


Example

Read server:/export/foo/bar with public filehandle

```
client -> server NFS C LOOKUP FH=0000 "export/foo/bar"
```

server -> client NFS R LOOKUP FH=03FC

client -> server NFS C READ FH=03FC 0 for 4096

server -> client NFS R READ OK

NFS URL

Public NFS

• Web clients can handle FTP URL's (RFC 1630):

ftp://server:port/path

• Why not NFS URL's ?

nfs://server:port/path

- Assume /path is relative to public filehandle on server and :port defaults to 2049 if omitted.
- Browser supports a subset of NFS protocol: LOOKUP, READDIR, READ, READLINK.
- Have modified NCSA Mosaic to do this.

NFS URL: Performance

• NFS was designed for good performance. Implementations are highly tuned.

- HTTP: ~500 ops/sec NFS: ~5,000 ops/sec

- HTTP: ~100 ms NFS: ~10 ms

• NFS servers tightly integrated with OS.

- Competitive NFS server market performance is everything.
- Anyone working on FTPD performance?
- Fledgling HTTP server market.

NFS URL: Intranets

- NFS servers already deployed in "Intranets"
- Current access by static mount (PC-NFS) or automount (UNIX).
- Web access requires co-located HTTP server or "file:" URL.
- NFS URL's provide fast access to NFS data from any desktop.

NFS URL: Internet

- Hardly any NFS servers on Internet. This is an opportunity!
- Alternative to anonymous FTP:
 - -ftp://ftp.sunsite.unc.edu/pub/src/
 - -nfs://ftp.sunsite.unc.edu/pub/src/
- Replace FTP
- Faster alternative to HTTP for non-CGI pages.
- Web pages are full of relative URL's to small files.

Status

- Modified NCSA Mosaic available.
- Browser mods will be given to WWW Consortium Library of Common Code.
- Will publish an Informational RFC that describes NFS URL and requirements to support Public NFS.
- Solaris servers will support Public NFS.
- Comparative benchmarking of HTTP, FTP, NFS.
- Persuade browser vendors support NFS URLs.
- Persuade firewall admins to allow outgoing TCP connections on port 2049.

Slide 15