
Building IP
Security

Daniel L. McDonald - Solaris Internet
Engineering

Introduction

• Drawing upon two platforms

• 4.4 BSD (NRL IPv6/IPsec)

• SunOS 5.x (IPv6/IPsec)

• General issues and considerations.

• Some nuts-and-bolts.

The Big Picture
Key
Managementvanilla

application
IPsec-aware
application

TCP, UDP, etc. SADB
(key engine)

AH ESP

IP

User space

Kernel space

Security Association Table (SADB)

• Is to IPsec what routing and ARP
tables are to IP.

• PF_KEY provides interface to key
management apps in user-space.

• getassocby*() calls provide
primary SPI support.

PF_KEY Key Management API

• Analagous to 4.4 BSD’s routing
socket.

• Keeps (out of band) key
management in user-space.

• Messages originate both in
kernel-space and in user-space.

PF_KEY Messages
• SADB_REGISTER

• SADB_ACQUIRE

• SADB_GETSPI

• SADB_UPDATE

• SADB_ADD

• SADB_DELETE

• SADB_EXPIRE

• SADB_GET

• SADB_FLUSH

Key Management

• Manual Keying

• Out-of-band key management

• ISAKMP/Oakley
• Photuris
• Needham-Schroeder scheme

• In-band key management requires
more kernel support.

getassocby*() calls.

• Used by IPsec to get security
associations.

• There are other SADB kernel
interfaces, but those are largely in
support of PF_KEY, or other
maintenance.

getassocbyspi()

• Arguments include SPI, IP source,
IP destination, type.

• Used for inbound packets.

• Usually packet is dropped if this
fails.

getassocbyendpoint()

• endpoint is usually replaced with
system term (socket, pcb).

• Arguments include endpoint ID, IP
addresses, type, and others.

• Used for outbound packets.

• May cause SADB_ACQUIRE
messages.

• What else may need to be passed
here?

• Certificate ID

• Algorithm Preference

• Keying Properties

Modifications to Existing Code

• Modifications include:

• Datagram tagging

• Policy checking per endpoint
(and API to set it)

• Global policy

Datagram Tagging

• Incoming data

• AH, or ESP done?

• What SAs were used?

• Outgoing data

• Endpoint ID, and progress.

On Policy, and What Is Implemented

• Categories

• AH
• ESP Transport
• ESP Network

• Levels per category

• Default/None (and Bypass)
• Use if available
• Use
• Require
• Require Unique

Per-Endpoint Policy

• Each endpoint should use its own
SAs.

• Categories are socket options,
levels are values.

• Enforced by tagging outbound, and
by checking tags inbound.

Global Policy

• A system may enforce global IPsec
policy.

• Basically, more paranoid of global
policy and endpoint policy wins.

• Finer granularity may be needed.

• Per-route is one idea.

Policy Enforcement

• Inbound packets

• While IPsec work is done,
packet is marked.

• When endpoint is determined,
compare markings and
endpoint’s expectations.

Policy Enforcement (cont.)

• Outbound Packets

• Mark packet with endpoint’s
expectations.

• Before fragmentation, perform
necessary IPsec processing
based on packet’s marks.

Other IP Concerns

• ICMP message policy?

• Resource allocation. (This is true in
every part, actually.)

• Slowing down the non-IPsec cases.

Common IPsec Inbound Processing

• Demux on next-header (protocol).

• Call getassocbyspi().

• If failed, drop packet and log.

• Perform AH/ESP specific tasks.

• Perform replay functions.

• Strip headers and continue.

AH-specific Inbound Processing

• Perform authentication calculation.

• Compare with data, if no match,
drop and log.

• Mark packet as authentic.

ESP-specific Inbound Processing

• Decrypt packet. (Beware garbage.)

• If needed, authenticate data.

• If authentication fails, drop and log.

• If inner packet is IP, compare inner
and outer headers. If not the same
pretend packet is fresh off the wire.

• Mark packet appropriately.

Common IPsec Outbound Processing

• Must perform before fragmentation.

• Mark packet with IPsec it needs.

• Apply in order: ESP transport, AH,
ESP network.

• In each case, call
getassocbyendpoint().

• If key mgmt. is invoked, queue
up and wait for result. (Like
ARP.)

• Otherwise proceed.

• Then fragment. (NOTE: TCP
might want to know the impact of
IPsec overhead.)

AH-specific Outbound Processing

• Compute authentication calculation.

• Bump replay counter (if used).

• Insert AH and update pre-AH
header.

• Continue

ESP-specific Outbound Processing

• Create ESP appendage and replay
counter (if using replay protection).

• Compute authentication (if needed).

• Append authentication result.

• Encrypt ESP portion of datagram.

• NOTE: If using ESP Network Mode
end-to-end, prepend IP before start.

Socket Enhancements for IPsec

• Each category is a socket option.
• IPSEC_AUTH_LEVEL
• IPSEC_ESP_TRANS_LEVEL
• IPSEC_ESP_NETWORK_LEVEL

• Each level is a value.
• IPSEC_LEVEL_BYPASS
• IPSEC_LEVEL_{NONE,DEFAULT}
• IPSEC_LEVEL_AVAIL
• IPSEC_LEVEL_USE
• IPSEC_LEVEL_REQUIRE

• IPSEC_LEVEL_UNIQUE

• Will also eventually need other
settings:

• Algorithm preferences.

• Certificate IDs.

Miscellaneous Issues

• Finer grained policy.

• Modifying applications to use IPsec

• Inetd (inetd.conf settings)

• Rcmds (with cert. IDs?)

• Tunnelling abstraction
• Virtual interface?

• Special "secure routes"?

Conclusion

• Many considerations when building
IPsec.

• We need significant implementation
experience like we’ve had for TCP.

