
page 1 of 16 Network Appliance Connectathon: March 10, 1998

SecureShareTM1

Safe UNIX/Windows File Sharing
through Multiprotocol Locking

1. Patent Pending

Andrea Borr

page 2 of 16 Network Appliance Connectathon: March 10, 1998

Agenda

Multiprotocol File Sharing in Mixed UNIX/Windows Networks
Problems with Uncoordinated Concurrent Reads and Writes
Locking Model of CIFS
Locking Model of UNIX with NFS/NLM
Issues Impeding CIFS, NFS/NLM Interoperability
Features of SecureShare = Multiprotocol Lock Manager
The Uniform Lock-Mode Model
Coping with NFS/NLM’s Lack of File-Open
The CIFS Oplock Model
Why NFS and NLM Must Break Oplocks
Example: NFS rm Encounters an Oplocked File...
Conclusions

page 3 of 16 Network Appliance Connectathon: March 10, 1998

Multiprotocol File Sharing in Mixed UNIX/Windows Networks

UNIX Clients -- NFS or NFS/NLM

Windows Clients -- CIFS or (PC)NFS

• Concurrent requests on shared server files, directories:

- NFS read, write, create, rm, rmdir, mv, etc.

- NLM byte-range lock

- CIFS open, read, write, close, create, delete, rename, move, etc.

- CIFS byte-range lock

page 4 of 16 Network Appliance Connectathon: March 10, 1998

Problems with Uncoordinated Concurrent Reads and Writes

Application Failures

File Data Integrity Problems

Cache Coherence Problems

Examples of Problems:

1 Readers receive stale data (currently being updated by another application)

2 Writers overwrite each others’ updates

3 Applications have in-use files deleted or renamed “out from under” them

page 5 of 16 Network Appliance Connectathon: March 10, 1998

Locking Model of CIFS

CIFS Avoids Problems 1-3 by Assuming that the Server & all of Clients Conform to:

• Hierarchical Locking
- Application must open file (getting file-lock) before doing

reads, writes, byte-range locks, ..

- Open specifies access-mode for requester (Read, Write, Read-Write)
and deny-mode for others (Deny-None, Deny-Read, Deny-Write, Deny-All)

• Mandatory Locking
- System validates reads, writes against file-locks, byte-range locks

- Disallows read/write of file except under an open with appropriate access-mode

- Disallows write/read of byte-range (non)exclusive-locked by another

- Disallows open with access-mode incompatible with previous open’s deny-mode
or a deny-mode incompatible with previous open’s access-mode

page 6 of 16 Network Appliance Connectathon: March 10, 1998

Locking Model of UNIX with NFS/NLM

• Non-hierarchical Locking, Lack of File-Open
- No locking hierarchy or file-open functionality

- No way to pre-declare an intended file access-mode before reads/writes,
or a deny-mode for others accessing the file

- No way to obtain a file-lock prior to requesting a byte-range lock.

• Advisory Locking
- System does not validate read, write, create, rm, rmdir, mv, .. against locks

- Enforcement of locks relies on compliance by well-behaved applications.

page 7 of 16 Network Appliance Connectathon: March 10, 1998

Issues Impeding CIFS, NFS/NLM Interoperability

A. CIFS Hierarchical Locking vs. NFS/NLM Non-hierarchical Locking

B. CIFS Mandatory Locking vs. NFS/NLM Advisory Locking

C. Server OS (e.g. UNIX) may lack means to validate
(local or NFS) read, write, create, rm, rmdir, mv, ..
vs. CIFS locks

Problems 1-3 with Uncoordinated Concurrent Reads and Writes arise in the mixed CIFS, NFS/NLM
environment if these issues are not dealt with, i.e.:

1 Readers receive stale data

2 Writers overwrite each others’ updates

3 Applications have in-use files deleted or renamed “out from under” them

page 8 of 16 Network Appliance Connectathon: March 10, 1998

 Features of SecureShare = Multiprotocol Lock Manager

• Multiprotocol Data Integrity
Reconciles the different and incompatible locking and file-open
semantics utilized by CIFS and NFS/NLM clients.

• Multiprotocol Oplock Management
Supports standard CIFS oplocks, while at the same time making
oplocked data available to NFS-based clients through multiprotocol
oplock break.

• Multiprotocol Change-Notify
Supports standard CIFS change-notify, while extending it to cover
changes due to NFS in addition to covering changes due to CIFS

page 9 of 16 Network Appliance Connectathon: March 10, 1998

The Uniform Lock-Mode Model

• Uniform lock-mode encompasses both
file-locks and byte-range locks

• Lock-mode expresses exclusivity of access:
lock-mode = access-mode “+” deny-mode

• Open --> File-lock:
lock-mode (file-lock) = access-mode & deny-mode (Open)

• Byte-range locks:
read-lock = non-exclusive = Read/Deny-Write
or
write-lock = exclusive = Read-Write/Deny-All

page 10 of 16 Network Appliance Connectathon: March 10, 1998

Coping with NFS/NLM’s Lack of File-Open

• file-lock’s deny-mode vs. NLM byte-range lock’s access-mode
(approximates NFS/NLM’s “Open” access-mode)

• Treat NLM byte-range lock’s deny-mode as Deny-None
(only applies to byte-range, not whole file)

• Example: New Open/Deny-Read or Deny-Write or Deny-All fails
if pre-existed exclusive NLM byte-range lock

• Example: New exclusive NLM byte-range lock request fails
if pre-existed Open/Deny-Read or Deny-Write or Deny-All

page 11 of 16 Network Appliance Connectathon: March 10, 1998

The CIFS Oplock Model

- Oplocks Assure Global Cache Coherency for Read-Write-Shared Files
with Minimized Network Traffic / Maximized Client Caching

- Server “Opportunistically” Grants First Client’s Open (though non-exclusive)
a temporary (“breakable”) exclusive file-lock

- Client Caches Writes, Locks, Readaheads;
Batch Oplock (kept “forever”): Client Caches Application Opens, Closes.

- Second Client’s Open is Suspended while
Server Sends Oplock Holder an Oplock-Break-Message

- Client Holding Oplock Has a Choice:
(1) Close the File (e.g. “stale” batch oplock: application has exited); or
(2) Flush Cached Writes & Locks, send Oplock-Break-Ack message

- Server Now Allows the Second Client’s Open to Proceed

page 12 of 16 Network Appliance Connectathon: March 10, 1998

How Oplocks Work
Client A (CIFS) Client B (CIFS/NFS) Server

Open OK. Oplock granted to A.

Open/ NFS access OK to B.

Data to A.

Oplock Break to A.

Close-or-Done OK to A.
Close-or-Done

Open (“foo”)

Open (“foo”)

Read

Suspend pending Oplock-Break ACK from A

Lock(s)
Lock(s) response(s) to A.

Write(s)
Write(s) response(s) to A.

or
NFS read / write
 rm / mv / rmdir

page 13 of 16 Network Appliance Connectathon: March 10, 1998

How Oplocks Work (Batch Oplock)
Client A Client B Server

Open OK. Batch oplock granted to A.

Open (or NFS request) OK to B.

Data to A.

Oplock Break-to-None to A.

Close OK to A.

<close>

<open>

Close

Open (“foo”)

Open (“foo”)

Read

<read>

<close>

Suspend pending Oplock-Break ACK from A
or

NFS read / write
 rm / mv / rmdir

page 14 of 16 Network Appliance Connectathon: March 10, 1998

Why NFS and NLM Must Break Oplocks

• Choices when NFS or NLM encounters an oplocked file:
#1 Enforce potentially breakable oplock ----->

file is unnecessarily unavailable to NFS/NLM applications

#2 Ignore the oplock ----->
imperils file’s data integrity

• Choice #1: Unreasonable unavailability to NFS/NLM in cases
(a) Stale batch oplock: Application closed file hours ago!!

(b) Unnecessarily exclusive file-lock: Still-current open was non-exclusive

• Choice #2: NFS operation could lead to data corruption

page 15 of 16 Network Appliance Connectathon: March 10, 1998

Example: NFS rm Encounters an Oplocked File...

• NFS rm Suspends during Oplock Break Send-Response,
then Restarts

• Case of Stale Batch Oplock:
Oplocker Responds: File Close
(Restarted) NFS rm Succeeds

• Case of Application Still Using File:
Oplocker Responds: Writes, Locks, Oplock-Break-Ack
(Restarted) NFS rm Fails

page 16 of 16 Network Appliance Connectathon: March 10, 1998

Conclusions

Need Integrated NLM / CIFS Lock Manager to

• Maintain CIFS Data Coherency when CIFS and NFS
Share Read-Write Access to the Same Files

• Prevent Files from Being Removed/Renamed
“out from under” a PC Application

• Allow CIFS Clients to Receive Oplock Break Notifications
when NFS Attempts to Access an Oplocked File

• Send Change-Notify Messages to an NT GUI Window
when NFS Makes Changes in a Directory

