Status of the Linux NFS client

e Introduction - aims of the Linux NFS client
* General description of the current status
* NFS meets the Linux VFS
* Peculiarities of the Linux VFS vs. requirements of NFS
e Linux NFS read/write code
*The development patches
* Future developments?

Introduction

Aims of the Linux NFS client

'Prime directive':
* Fully compliant client implementation of NFSv2/v3 with NLM locking over
both UDP, TCP
* Optimal performance.
e Particular emphasis on caching
* Minimal change to the Linux VFS - modularity.

Secondary goals:

« Support for diskless workstations (a.k.a. NFSroot)
* Support for different authentication schemes.

« Support for layered filesystems (cachefs, etc.).

General description of status

Current NFS features implemented in kernel 2.4.18

* RPC version 2
* Transport over IPV4 using both UDP and TCP supported

*AUTH_NULL + AUTH_SYS authentication. No support for AUTH_DES or
AUTH_KERB yet...

* NFS version 2
e Full implementation. No features missing.

*NFS version 3

* Almost complete. All features except READDIRPLUS, ACCESS (see later
slide), and exclusive CREATE implemented.

 Fail Connectathon test against servers that don't return attributes in
CREATE - otherwise all tests passed so far...

« NLM versions 1, and 4

e F1ill imnlementatinn inclitdino rehnot recovory

NFS meets the Linux VFS

Linux implementation features - The dcache

*File paths are represented in the Linux dentry cache (dcache) which is
completely managed by the VFS

Parent

| linked list
| |

Subdir 1 J File 1

*dcache is completely separate from data & metadata caches.
*Path is automatically broken down into single elements.
* Mount point traversal, symlink traversal etc. all performed at VFS level.

 Filesystem gets called back when looking up an uncached path
element, or when revalidating a cached one.

NFS meets the Linux VFS

The dcache

* Fast getcwd() can be handled fully by the VFS. No need to call back NFS
subsystem

* Problem: dcache is a static structure, hence client and server path
information may differ.

Renames on the server are only reflected when looking up a new

path.

« Implies that getcwd() and chdir("..") can sometimes give
'unexpected' results.

If a directory in which an existing process is working gets moved
from one location to another, you might end up aliasing the
directory trees.

NFES meets the Linux VFS

VEFS services - File data caching

 File metadata saved in the 'inode' cache.
* Full 64-bit metadata available to the filesystem via private fields
 However, some data is 32-bit only at the VFS & user level
inode number (a.k.a. fileid)
*(a|c/m)time
*File data is cached in a 'unified buffer/page cache'.

* Data neutral - caches raw READDIR data, symlink data, regular file
data,...

*Individual pages are tagged by means of an 'unsigned long' index
« Gives 44-bit address space on i386 (32-bit index + 12-bit page size).

* Minimizes use of slow (on 32-bit systems) 64-bit arithmetic within
the kernel

NFS meets the Linux VFS

The darker side of the Penguin - known NFS problems

*The stable Linux kernel (currently linux 2.4.18) does not implement
close-to-open semantics properly:

e Cached attributes are sometimes not revalidated on open(). Problem
affects open("."), open("..") and is due to the dcache assuming it
doesn't have to revalidate those dentries

*Inefficiency due to use of LOOKUP in situations where GETATTR would
suffice.

* NFSv3 ACCESS call is not implemented correctly. Need caching support in
order to make progress. Currently only call server for the following cases:
*Check for root squashing
* Check if server has some ACL that overrides the case when standard
UNIX permission bits deny access.

NFES meets the Linux VFS

known NFS problems

* Readdir currently does not respect RFC1813 with respect to 'dtpref'. Linux
never issues requests with sizes greater than PAGE_CACHE_SIZE (due to
limitations of the page cache API). On most 32-bit platforms
PAGE_CACHE_SIZE = 4k.

*User-land libc implementation relies heavily on being able to seek() the
READDIR stream. It also mixes 64-bit and 32-bit readdir system calls. Leads
to nasty incompatibilities against certain server platforms. Kernel 'hack'
is available on my beta-test site that 'fixes' problem for known servers, but
problem really needs to be solved in libc.

Linux NFS read/write code

Features

* Has support for both synchronous and delayed reads/writes.
*All read/writes are done through the page cache
*No support for any form of uncached read/writes.
*1/0 access to the page cache is serialized by a per-page bit-lock.
«=> VFS supports read/write to single pages only to avoid deadlocks.

« => NFS client subsystem must do its own clustering of pages in
order to achieve > PAGE_SIZE read/writes. (This can of course not be
done for synchronous writes.)

* Byte range POSIX locks via the NLM protocol

sincludes support for delayed writes.

Linux NFS read/write code

Delayed writes

*For delayed writes:

* Full support for NFSv3 server-side write caching (a.k.a. unstable
writes).

*Support for coalescing several contiguous requests into a single RPC
call. Maximum value of wsize is currently 32k.

*Only one one request allowed per page - flush out older requests that
are not contiguous and/or have incompatible credentials.

«=> writes into the same page will be fully serialized when doing
byte-range locking.

- Limit of 256 cached/pending read+write requests per mount. Limit
required in order to regulate memory footprint.

Linux NFS read/write code

Delayed reads and misc other features

* For delayed reads:
* Coalesce requests from contiguous page ranges. Maximum rsize = 32k

*Generic readahead is supported via the standard VFS interface. Users
can either call the 'sys_readahead()' system call in order to manage
their own readahead, or allow VFS to manage it automatically.

* Other read/write features/bugs that are peculiar to Linux:

*The Linux shared mmap() interface does not flush out data on
close()/munmap() (ordinary writes do!)

The development patches

Available for beta-testing

*Represent a collection of patches to the kernel source code, that are
written by others + myself. Not guaranteed to make it into the kernel.

« All NFS client patches available from web-site
http://www.fys.uio.no/~trondmy/src

* Apply to stock kernel from ftp.kernel.org (Patches are NOT guaranteed to
apply to pre-patched kernels from the various Linux distributors)

e Current highlights:
* Fix NFS close-to-open problem
*NFSv3 READDIRPLUS implementation
Implement O_DIRECT file read/writes.
*Finer grained SMP locking

* Problems should be reported to me (trond.myklebust@fys.uio.no) and/or
the Linux NFS mailing-list NFS@list.sourceforge.net.

Future developments

Suggestions?
*Secure RPC (the beginnings of a backport from the NFSv4 codebase has
been developed by Andy Adamson & myself during this Connectathon!)
* Proper treatment of credentials in a BSD-like scheme.
* NFS over IPVG6.
*NFSv4 (see Andy Adamson's talk)

 Documentation?

