
Status of the Linux NFS clientStatus of the Linux NFS client
Introduction - aims of the Linux NFS client
General description of the current status
NFS meets the Linux VFS

Peculiarities of the Linux VFS vs. requirements of NFS
Linux NFS read/write code
The development patches
Future developments?

IntroductionIntroduction

'Prime directive':
Fully compliant client implementation of NFSv2/v3 with NLM locking over
both UDP, TCP
Optimal performance.

Particular emphasis on caching
Minimal change to the Linux VFS - modularity.

Secondary goals:
Support for diskless workstations (a.k.a. NFSroot)
Support for different authentication schemes.
Support for layered filesystems (cachefs, etc.).

Aims of the Linux NFS client

RPC version 2

Transport over IPV4 using both UDP and TCP supported

AUTH_NULL + AUTH_SYS authentication. No support for AUTH_DES or
AUTH_KERB yet...

NFS version 2

Full implementation. No features missing.

NFS version 3

Almost complete. All features except READDIRPLUS, ACCESS (see later
slide), and exclusive CREATE implemented.

Fail Connectathon test against servers that don't return attributes in
CREATE - otherwise all tests passed so far...

NLM versions 1, and 4

Full implementation including reboot recovery.

Current NFS features implemented in kernel 2.4.18

General description of statusGeneral description of status

File paths are represented in the Linux dentry cache (dcache) which is
completely managed by the VFS

dcache is completely separate from data & metadata caches.

Path is automatically broken down into single elements.

Mount point traversal, symlink traversal etc. all performed at VFS level.

Filesystem gets called back when looking up an uncached path
element, or when revalidating a cached one.

Linux implementation features - The dcache

linked list

NFS meets the Linux VFSNFS meets the Linux VFS

Parent

Subdir 1 File 1

The dcache

NFS meets the Linux VFSNFS meets the Linux VFS

Fast getcwd() can be handled fully by the VFS. No need to call back NFS
subsystem

Problem: dcache is a static structure, hence client and server path
information may differ.

Renames on the server are only reflected when looking up a new
path.

Implies that getcwd() and chdir("..") can sometimes give
'unexpected' results.

If a directory in which an existing process is working gets moved
from one location to another, you might end up aliasing the
directory trees.

File metadata saved in the 'inode' cache.

Full 64-bit metadata available to the filesystem via private fields

However, some data is 32-bit only at the VFS & user level

inode number (a.k.a. fileid)

(a|c|m)time

File data is cached in a 'unified buffer/page cache'.

Data neutral - caches raw READDIR data, symlink data, regular file
data,...

Individual pages are tagged by means of an 'unsigned long' index

Gives 44-bit address space on i386 (32-bit index + 12-bit page size).

Minimizes use of slow (on 32-bit systems) 64-bit arithmetic within
the kernel

VFS services - File data caching

NFS meets the Linux VFSNFS meets the Linux VFS

NFS meets the Linux VFSNFS meets the Linux VFS

The stable Linux kernel (currently linux 2.4.18) does not implement
close-to-open semantics properly:

Cached attributes are sometimes not revalidated on open(). Problem
affects open("."), open("..") and is due to the dcache assuming it
doesn't have to revalidate those dentries
Inefficiency due to use of LOOKUP in situations where GETATTR would
suffice.

NFSv3 ACCESS call is not implemented correctly. Need caching support in
order to make progress. Currently only call server for the following cases:

Check for root squashing
Check if server has some ACL that overrides the case when standard
UNIX permission bits deny access.

The darker side of the Penguin - known NFS problems

Readdir currently does not respect RFC1813 with respect to 'dtpref'. Linux
never issues requests with sizes greater than PAGE_CACHE_SIZE (due to
limitations of the page cache API). On most 32-bit platforms
PAGE_CACHE_SIZE = 4k.

User-land libc implementation relies heavily on being able to seek() the
READDIR stream. It also mixes 64-bit and 32-bit readdir system calls. Leads
to nasty incompatibilities against certain server platforms. Kernel 'hack'
is available on my beta-test site that 'fixes' problem for known servers, but
problem really needs to be solved in libc.

known NFS problems

NFS meets the Linux VFSNFS meets the Linux VFS

Has support for both synchronous and delayed reads/writes.

All read/writes are done through the page cache

No support for any form of uncached read/writes.

I/O access to the page cache is serialized by a per-page bit-lock.

=> VFS supports read/write to single pages only to avoid deadlocks.

=> NFS client subsystem must do its own clustering of pages in
order to achieve > PAGE_SIZE read/writes. (This can of course not be
done for synchronous writes.)

Byte range POSIX locks via the NLM protocol

includes support for delayed writes.

Features

Linux NFS read/write codeLinux NFS read/write code

For delayed writes:

Full support for NFSv3 server-side write caching (a.k.a. unstable
writes).

Support for coalescing several contiguous requests into a single RPC
call. Maximum value of wsize is currently 32k.

Only one one request allowed per page - flush out older requests that
are not contiguous and/or have incompatible credentials.

=> writes into the same page will be fully serialized when doing
byte-range locking.

Limit of 256 cached/pending read+write requests per mount. Limit
required in order to regulate memory footprint.

Delayed writes

Linux NFS read/write codeLinux NFS read/write code

For delayed reads:

Coalesce requests from contiguous page ranges. Maximum rsize = 32k

Generic readahead is supported via the standard VFS interface. Users
can either call the 'sys_readahead()' system call in order to manage
their own readahead, or allow VFS to manage it automatically.

Other read/write features/bugs that are peculiar to Linux:

The Linux shared mmap() interface does not flush out data on
close()/munmap() (ordinary writes do!)

Delayed reads and misc other features

Linux NFS read/write codeLinux NFS read/write code

Represent a collection of patches to the kernel source code, that are
written by others + myself. Not guaranteed to make it into the kernel.

All NFS client patches available from web-site

http://www.fys.uio.no/~trondmy/src

Apply to stock kernel from ftp.kernel.org (Patches are NOT guaranteed to
apply to pre-patched kernels from the various Linux distributors)

Current highlights:

Fix NFS close-to-open problem

NFSv3 READDIRPLUS implementation

Implement O_DIRECT file read/writes.

Finer grained SMP locking

Problems should be reported to me (trond.myklebust@fys.uio.no) and/or
the Linux NFS mailing-list NFS@list.sourceforge.net.

Available for beta-testing

The development patchesThe development patches

Secure RPC (the beginnings of a backport from the NFSv4 codebase has

been developed by Andy Adamson & myself during this Connectathon!)

Proper treatment of credentials in a BSD-like scheme.

NFS over IPV6.

NFSv4 (see Andy Adamson's talk)

Documentation?

Suggestions?

Future developmentsFuture developments

