
NFS over TCP:
Excessive wakeups with BSD-based stacks

Ric Werme
Compaq Computer

Connectathon 2002

A single 64 KB NFS write
• 45 “classic” frames or

• 8 jumbo frames:
clnt.791 > svr.2049: P 829:9789(8960) ack 873 win 49152

clnt.791 > svr.2049: P 9789:18749(8960) ack 873 win 49152

clnt.791 > svr.2049: P 18749:27709(8960) ack 873 win 49152

clnt.791 > svr.2049: P 27709:36669(8960) ack 873 win 49152

clnt.791 > svr.2049: P 36669:45629(8960) ack 873 win 49152

clnt.791 > svr.2049: P 45629:54589(8960) ack 873 win 49152

clnt.791 > svr.2049: P 54589:63549(8960) ack 873 win 49152

clnt.791 > svr.2049: P 63549:66513(2964) ack 873 win 49152

svr.2049 > clnt.791: . ack 18749 win 40192

svr.2049 > clnt.791: . ack 36669 win 31232

svr.2049 > clnt.791: . ack 54589 win 22272

svr.2049 > clnt.791: . ack 66513 win 49152

svr.2049 > clnt.791: P 873:1037(164) ack 66513 win 49152

Data throttles

• TCP throttles:

 window

 congestion control

• Sockbuf throttle:

 sb_hiwat/soreserve()

• Atomic sends

 Can’t interleave RPC messages!

Data release

• TCP window updates

• TCP ACKs and sockbuf removals

 svr.2049 > clnt.791: . ack 54589 win 22272

 svr.2049 > clnt.791: . ack 66513 win 49152

Multiple NFS writes

• Client: Sends several more 64 KB writes.
Eventually, nfsiod threads block waiting for 64 KB
in the sockbuf.

• As ACKs arrive, acknowledged data is removed
and sowwakeup() called to let “the” sender buffer
more data.

• All the client threads wakeup, typically all find
nothing has changed and go back to sleep.

• Sometimes one thread gets lucky and buffers the
next write.

SB_WAKEONE?

• BSD can awaken a single thread in
sowakeup(), currently not used in Tru64
Unix. (Other mechanisms are used in NFS
and elsewhere.

• Does not solve the reordering problem as
requests remain “SIRO” – sequential in,
random out.

Other solutions
• Queue of threads waiting for sockbuf
 Extra locking, code, overhead.

 Could be done mostly in RPC code.

 Could use sb_wakeup() callback.

• Bigger sockbuf
 Trivial change, at least for a first pass.

 Memory is cheap. Really cheap!

 Bigger TCP window on receive side,

 permits bigger bandwidth-delay product.

NFS reads

• Readahead done differently than write behind
 Block 0: no read ahead

 Block 1: issue read aheads for 2 & 3, read 1

 Block 2: issue read aheads for 4 & 5, wait for 2

 Block n: issue read ahead for n+8, wait for n

• First, client trace (shows reads better)

• Second, server trace

• No big surprises

