ہو NetApp®

NFS and Commercial Workloads Darrell Suggs Stephen Daniel

Overview

- Who We Are and Why We Care
- Our Message, Mission, and Targets
- NFS Performance Escalation The Customer's View
- NFS Client Performance What Really Matters
- War Stories From Real Customers
- Why is this happening with NFS in Commercial Workloads
- What we are doing
- What makes an Enterprise NFS Client
- Q&A

Overview

- What is a commercial Workload?
 - Large multi-user application
 - Ratio of clients to servers is small
 - Applications often randomly read and write large files
- Examples
 - Databases, SAS, large email servers, ...

Who We Are

- Network Appliance
 - Number 1 NAS Storage Vendor NFS
- Darrell Suggs
 - Senior Performance Engineer
 - Final defense for NFS performance escalations
- Steve Daniel
 - Technical Director Database Performance
 - Final defense for Database perf escalations

Why We Care

Linux, Solaris, AIX, HPUX Product

UNIX Host NFS Client NetApp Product

NetApp Filer NFS Server

Connectathon 2004 Slide 5

Connectathon 2004 Slide 6

Our Message

- NFS → Delivers real management/cost value
- NFS → Core Data Center
- NFS → Mission Critical Database Deployments
- NFS → Deliver performance of Local FS ???
- NFS → Compared directly to Local FS/SAN

Our Mission

- Support NFS Clients/Vendors
 - We are here to help
- Ensure successful commercial deployments
 - Translate customer problems to actionable plans
- Make NFS as good or better than Local FS
 - This is true under certain circumstances already
- Disseminate NFS performance knowledge
 - Customers, Vendors, Partners, Field, Engineers

Connectathon 2004 Slide 8

The Customer's View

Typical NFS Performance Escalation

Performance -Some metric with Speed X - TPM or User Latency or Wall clock time

Connectathon 2004 Slide 9

The Customer's View

Typical NFS Performance Escalation

NFS Client Performance

- Traditional Wisdom
 - NFS is slow due to Host CPU consumption
 - Ethernets are slow compared to SANs
- Two Key Observations
 - Most customers have CPU cycles to spare
 - Ethernet is 1 Gbit = 100 MB/s. FC is on 2x

NFS Client Performance

- Reality What really matters
 - Caching behavior
 - Wire efficiency (application I/O : wire I/O)
 - Single mount point parallelism
 - Multi-NIC scalability
 - Throughput IOPs and MB/s
 - Latency (response time)
 - Per-IO CPU cost (in relation to Local FS cost)
 - Wire speed and Network Performance

War Stories

- Real situations we've dealt with
- Clients remain Anonymous
 - NFS vendors are our friends
 - Legal issues, yadda, yadda
 - Except for Linux Fair Game
- So, some examples...

Caching – Weak Cache Consistency

- Symptom
 - Application runs 50x slower on NFS vs Local
- Local FS Test
 - dd if=/dev/zero of=/local/file bs=1m count=5
 - See I/O writes sent to disk
 - dd if=/local/file of=/dev/null
 - See NO I/O reads sent to disk
 - Data was cached in host buffer cache
- NFS Test
 - dd if=/dev/zero of=/mnt/nfsfile bs=1m count=5
 - See I/O writes sent to NFS server
 - dd if=/local/file of=/dev/null
 - See ALL I/O reads send to disk ?!?
 - Data was NOT cached in host buffer cache

Caching – Weak Cache Consistency

Actual Problem

- Threads processing write completions
- Sometimes completed writes out-of-order
- NFS client spoofed by unexpected mtime in post-op attributes
- NFS client cache invalidated because WCC processing believed another client had written the file
- Protocol Problem ?
 - Out-of-order completions makes WCC very hard
 - Requires complex matrix of outstanding requests
- Resolution
 - Revert to V2 caching semantics (never use mtime)
- Customer View
 - Application runs 50x faster (all data lived in cache)

Oracle SGA

- Consider the Oracle SGA paradigm
 - Basically an Application I/O Buffer Cache

• Or Multiple DB instances

Or Small Memory Setups

لود NetApp

Connectathon 2004 Slide 16

Oracle SGA – The "Cache" Escalation

• With Local FS

Host Main Memory

- Very Little Physical I/O
- Application sees LOW latency

• With NFS

- Lots of Physical I/O
- Application sees HIGH latency

Connectathon 2004 Slide 17

File Locks

• Commercial applications use different locking techniques

- No Locking
- Small internal byte range locking
- Lock 0 to End of File
- Lock 0 to Infinity (as large as file may grow)
- NFS Client behavior
 - Each client behaves differently with each type
 - Sometimes caching is disabled, sometimes not
 - Sometimes prefetch is triggered, sometimes not
 - Some clients have options to control behavior, some don't
- DB Setups differ from Traditional Environment
 - Single host connected via 1 or more dedicated links
 - Multiple host locking is NOT a consideration

File Locks

- Why does it matter so much?
 - Consider the Oracle SGA paradigm again

Configuration 1

Host Main Memory

Oracle Shared Global Area

Host Buffer Cache

NOT caching here is deadly

• Locks are only relevant locally

Configuration 2

Host Main Memory

Oracle Shared Global Area

Host Buffer Cache

Caching here is a waste of resources

NetApp

• Simply want to say "don't bother"

Network Appliance - Suggs/Daniel

Connectathon 2004 Slide 19

Cache Control Features

- Most of the NFS clients have no "control"
 - Each client should have several "mount" options
 - (1) Turn caching off, period
 - (2) Don't use locks as a cache invalidation clue
 - (3) Prefetch disabled
- Why are these needed
 - Application needs vary
 - Default NFS behavior usually wrong for DBs
 - System configurations vary

Over-Zealous Prefetch

- Problem as viewed by Customer
 - Database on cheesy local disk
 - Performance is ok, but need NFS features
 - Setup bake-off, Local vs NFS, a DB batch job
 - Local results: Runtime X, disks busy
 - NFS Results
 - Runtime increases to 3X
- Why is this?
 - NFS server is larger/more expensive
 - AND, NFS server resources are SATURATED
 - ?!? Phone rings...

Over-Zealous Prefetch

- Debug by using a simple load generator to emulate DB workload
- Workload is 8K transfers, 100% read, random across large file
- Consider I/O issued by application vs I/O issued by NFS client

	Latency	App Ops	NFS 4K ops	NFS 32K ops	4Kops/App Op	32K ops/App op
8K 1 Thread	19.9	9254	21572	0	2.3	0.0
8K 2 Thread	7.9	9314	32388	9855	3.5	1.1
8K 16 Thread	510.6	9906	157690	80019	15.9	8.1

- NFS Client generating excessive, unneeded prefetch
- Resources being consumed needlessly
- Client vendor was surprised. Created a patch.
- Result: Customer workload faster on NFS than on Local FS

Connectathon 2004 Slide 22

Poor Wire Efficiency – Some Examples

- Some NFS clients artificially limit operation size
 - Limit of 8KB per write on some mount options
- Linux breaks all I/O into page-size chunks
 - If page size < rsize/wsize, I/O requests may be split on the wire
 - If page size > rsize/wsize, operations will be split and serialized
- The Customer View
 - No idea about wire level transfers
 - Only sees that NFS is SLOW compared to Local

RPC Slot Limitation

Consider a Linux Setup

- Beefy server, large I/O subsystem, DB workload
- Under heavy I/O load
 - Idle Host CPU, Idle NFS server CPU
 - Throughput significantly below Wire/NIC capacity
 - Customer complains workload takes too long to run
- Clues
 - Using simple I/O load generator
 - Study I/O throughput as concurrency increases
 - Result: No increase in throughput past 16 threads

RPC Slot Limitation

Little's Law

- I/O limitation explained by Little's Law
- Latency, concurrency, throughput closely related
- To increase throughput, increase concurrency

Linux NFS Client

- RPC slot table has only 16 slots
- At most 16 outstanding I/O's per mount point, even when there are hundreds of disks behind that mount point
- Artificial Limitation
- Customer View
 - Linux NFS performance inferior to Local FS
 - Must Recompile kernel or wait for fix in future release

لود NetApp

Connectathon 2004 Slide 25

Writers Block Readers

Symptom

- Throughput on single mount point is poor
- Customer workload extremely slow compared to Local
- No identifiable resource bottleneck
- Debug
 - Emulate customer workload, study results
 - Throughput with only Reads is very high
 - Adding a single writer kills throughput
 - Discover writers block readers needlessly
- Fix
- Vendor simply removed R/W lock when performing direct I/O

Connectathon 2004 Slide 26

Applications Also Have Issues

- Some commercial apps are "two-brained"
 - Use "raw" interface for local storage
 - Use filesystem interface for NFS storage
 - Different code paths have major differences
 - Async I/O
 - Concurrency settings
 - Level of code optimization

Not an NFS problem, but is a solution inhibitor

Connectathon 2004 Slide 27

Why is this Happening?

- Is NFS a bad solution? Absolutely not!
- NFS began with a specific mission
 - Semi-wide area sharing
 - Home directories and shared data
- Note: problems are NOT with NFS protocol
 - Mostly client implementation issues
- Are the implementations bad? ...

Why is this Happening?

- The implementations are NOT bad.
- The Mission has changed!
 - Narrow sharing environment
 - Typically dedicated (often p2p) networks
 - Data sharing → High-speed I/O Interconnect
 - Mission evolved to Mission Critical Workloads
- Actually, NFS has done ok
 - Credit a strong protocol design
 - Credit decent engineering on the implementations

Why are things Harder for NFS?

- What makes Database + NFS different than Local FS?
 - For Local Filesystem Caching is simple
 - Just do it
 - No multi-host coherency issues
 - NFS is different
 - By default must be concerned about sharing
 - Decisions about when to cache/not, prefetch/not

Why are things Harder for NFS?

- Database + Filesystem Caching is complex
 - Most database deployments are single host (modulo RAC)
 - So, cross host coherency not an issue
 - However, customers get nervous about relaxing locks
 - Databases lock files (many apps don't)
 - Causes consternation for caching algorithms
 - Databases sometimes manage their own cache (ala Oracle SGA)
 - May or may not act in concert with host buffer cache

• Treading Water

- Working customer escalations
- Developed strong engineering relationships with NFS client vendors
- Uncover bugs, work with vendors, get patches
- Document what we know for customers
- Applying each lesson to other clients/workloads

- Documenting what we know
 - Writing Joint NetApp/Vendor Documentation
 - General NFS Performance Tuning
 - NFS Database Deployment Guidelines
 - E.g.
 - "Database NAS Performance: Optimizing Oracle on NFS and Next Generation File Protocols"
 - Joint Sun/NetApp Paper by Colaco/Suggs

Building a Boat

- Matrix of possible NFS clients is large
- Built a Performance Test environment
 - Contains HW from all vendors
 - Contains all flavors/releases of each OS (SAN boot)

Constructing a standard NFS Performance Suite

- Single script bundle
- Runs full spectrum of NFS tests
- Tests all conditions (mount options, caching, etc)
- Can be shared with customers and vendors

• So, what to do with all the information...

The NFS Scorecard

- Compares each client version/release
- Standard set of results for each client
- Contains
 - Actual numbers (e.g. MB/s)
 - Check lists (various mount options)
 - Behavior grades (caching)
 - Each result is rated: Good, bad, ugly
- Can share with Customers and Vendors
 - Modulo NDA constraints

What Makes an Enterprise NFS Client

- We are still figuring this out...
- Currently, the Scorecard is divided into categories
 - Out-of-box performance
 - Mount features
 - File system behaviors (caching/locking)
 - Wire efficiency (app op : wire op)
 - Scaling: concurrency and multi-NIC scaling
 - Well-tuned performance
 - Suitability for various commercial applications
 - Protocol comparisons (UDP vs TCP, V3 vs V4)

What about NFS evolution

- NFS is evolving
 - v4, RDMA, ...
 - But, v3 is today's technology (think "\$" now)
- NFS v4
 - Some performance enhancements
 - e.g. Delegations help with caching
 - Reasonable vehicle for general enhancements
- RDMA
 - Addresses higher speed wires
 - Offloads CPU cost and excess memory traffic

لو NetApp

NFS and Commercial Workloads

Questions and Answers ?

