NFS over TCP, Again
Connectathon 2006
March 1

Mike Eisler
email2mre-cthon2006@yahoo.com



Introduction

» Significance of “Again”
— Third time I’'ve presented on this topic at cthon
« 1993

« 1996
http://www.connectathon.org/talks96/nfstcp.pdf

» Why bore everyone a third time?
— 10+ years of experience and UDP persists

« 55% of NFS operations sent to NetApp filers use
UDP, 45% TCP

— Interesting interoperability issues still exist


http://www.connectathon.org/talks96/nfstcp.pdf

Why NFS/TCP?

> Until we get NFSv4.1 sessions, Exactly Once
Semantics are approximated via the duplicate request

cache

— Use of TCP reduces the chance that the duplicate request
cache will be needed, hence reduces the chance of a bad miss

» TCP is more secure: attackers can’t just spoof a
source IP address and send a UDP message that

vandalizes data
— TCP requires a round trip to establish connection

» TCP versus UDP performance is no longer an issue for

most vendors
— http://'www.spec.org/sfs97r1/results/sfs97r1.htmi

— Usually UDP numbers aren’t posted, or if they are, they are
about 5% better than TCP


http://www.spec.org/sfs97r1/results/sfs97r1.html

The difference between NFS/UDP and

NetApp' | NFS/TCP

» An NFS operation over UDP usually starts with a low

RPC timeout

— At each timeout, the operation is retried (retransmitted), with
the same XID, and the timeout doubled

— Once the maximum number of retransmissions is reached,
either a failure is reported to the application (soft mount) or
the operation is tried again with the low timeout

— E.g., Solaris 10. Initial timeout of 1.1 seconds, retrans count of
5. On retransmit, timeout is doubled only if less than 20
seconds.

e 11 +2*11+4*11+8%1.1 +16 * 1.1 + 20 = 54.1 seconds
of total timeout
« l.e. if hard mounted, about every minute we should see
“NFS server not responding”
— E.g. Linux 2.6. Initial timeout is about 100 milliseconds. The

total timeout after retransmissions works about to about a
minute. (Source: Chuck Lever)



The difference between NFS/UDP and

NetApp' | NFS/TCP (continued)

» An NFS operation over TCP usually starts with
a large NFS/RPC timeout
— Retransmissions at RPC level are zero
« TCP itself has re-transmissions if needed

— Once the operation times out, either a failure is
reported to the application (soft mount) or the
operation is tried again with the original timeout

— E.g., Linux 2.6. Timeout of 60 seconds.

* l.e. if hard mounted, about every 60 seconds we
should see “NFS server not responding”

— E.g. Solaris 10. Timeout is 60 seconds. But
effectively this is tripled to 180 seconds, though
user will see “NFS server not responding” every 60
seconds



Solaris NFS/TCP timeout history

» First prototypes had the 1.1 sec timeout (by accident)

— In 1993, NFSv2 WRITEs over 10 mbit/sec to servers with one
spindle with no NVRAM was really slow.

— Metadata intensive operations like NFSv3 READDIR+ were a
particular cause of problems

« The time to read a block of directory entries and load each
entry’s inode would sometimes exceed 1.1 seconds

— The re-issuing of the operation after 1.1 sec started a
snowball effect that eventually choked bandwidth

» Quickly increased timeout to 10 seconds

» Even 10 seconds turned out to be too low; eventually
led to the 60/180 second model (Solaris 2.6 and up)



What is magic about 60 and 180 seconds?

» 60 seconds: is about what NFS/UDP requests take to
timeout (with 1 try + 5 retransmissions)

» 180 seconds: what was necessary to allow streaming
I/O file copies to progress over network links ranging
from 14.4 kbits/sec through 100 mbits/sec

» Chuck Lever put it succinctly: NFS needs two
timeouts: one for network wait, one for storage
subsystem wait

— Using TCP allows TCP to manage the network wait (via TCP’s

own back off and retransmission algorithm) and NFS to
manage the storage wait (via the timeo= mount option)



In a 1 gigabit/sec world isn’t 10 seconds

long enough for an NFS/TCP timeout?

Not always

» Disk access times aren’t improving as fast as
networks, processors, and DRAM

» It is easy to find workloads (e.g. database) that
are disk bound and can’t benefit from server
or client caching

» Besides, any TCP-based application should
adapt to slower and/or higher latency media

— 10 second timeouts impairs operation over slower
links

— We don’t see timeo= options on ftp, sftp, scp, etc.



Downside of long (60 seconds+) timeouts:

NetApp' | Availability

» The storage industry is under pressure to drive availability higher
— .99999 availability is about 5 minutes per year of down time
— .999999 availability is about 30 seconds per year of down time

» Client takes longer to detect server failover/reboot
— Time t: client sends request, server ACKs at TCP level

— Time t+1: server reboots/fails over without sending a FIN/RST — a
disconnect indication — to client

— Time t+60: client retries, and this triggers a TCP connection reset

— Detecting server crash 59 seconds after it happens is incompatible
with 5-6 nines of availability

> This is sometimes mitigated when there are N threads/processes
using the same TCP connection
— So time t+60 becomes t + 60/N

» Mitigation might be better done via NULL procedure “pings” (per
RFC3530)



Lessons learned from NFSv4

» RFC3530 requires NFSv4 server to disconnect any
time it detects an NFSv4 client sending a retry over the
same connection

» Applying this rule to NFSv3/TCP turns out to be a bad
idea

Nothing is written saying NFSv3/TCP clients cannot retry
requests over the same connection

If the client has a very low timeout (real example: 100
milliseconds), and there’s a little bit of disk wait,

we end up breaking connections when server detects a retry
of an In progress request

We thus see many TCP disconnections/connections per
second and very little progress (at best)



Lessons learned from NFSv4 (continued)

» RFC3530 requires NFSv4 client to disconnect
any time it wants to send a retry

» Applying this rule to NFSv3/TCP can be a good

idea

— Unless the NFS/TCP timeout is as high as the TCP-
level connection timeout, packet traces show the
NFS client re-sending requests at the NFS level that
TCP might re-send at the TCP level.

— By disconnecting, the previous instance of the TCP
connection isn’t re-sending at the TCP level,
resulting in less stress on network and processors



Lessons learned from NFSv4 (continued)

» A client that disconnects after an NFS-level
timeout needs to be careful:

— As soon as the client re-connects, it should start re-
sending requests for incomplete RPCs

« Otherwise throughput can degrade significantly
for low NFS/TCP timeouts

» Workaround: mount —o timeo=600



Re-connecting Issues

» When a server reboots, every client wants to connect

» Clients will get ECONNREFUSED if the pending
connection queue is full

» Lessons for client:

— Avoid tight loops trying to re-connect to a server that returns
ECONNREFUSED

- Solaris seems to do fine with a 10 second delay
« Exponential back off might be better

— Re-connect as soon as possible after a connection is reset or
timed out

- Having interfaces that can discern ECONNREFUSED from
ECONNRESET is goodness

« If interfaces don’t have this flexibility, pursue an
exponential back off

» Lessons for server: that second parameter to listen()
doesn’t have to be 5. Longer queues are better.



Other Lessons

» EJUKEBOX needs careful handling

— When the client gets NFS3ERR_JUKEBOX/NFS4ERR_DELAY,
after a delay, it needs to send the retry with new XID

« Otherwise, even after the EJUKEBOX-induced event is
over, the client will hit the server’s duplicate request cache

— _deponential back off after receiving EJUKEBOX is not a good
idea
- A couple clients will potentially wait years if they get
enough EJUKEBOX errors in succession

» Not specific to TCP, but xid generation remains an
ISSUe:
— Still some clients that try the random/pseudo random
approach for seeding the xid
« It just leads to premature xid re-use and bad hits in the
duplicate request cache
- Starting the xid with time of day in seconds, shifted to the
left, has stood the test of time



Summary advice for NFS client developers

» 60 second+ timeouts. Good for the net, and they avoid
potential problems with clients and servers

> If no timeo= option shows up on the mount command,
the default value should be determined inside the
kernel, not in the mount command
— Make default timeout a tunable parameter

» NFSv3/TCP servers must not disconnect when they
see retries

» Use NULL pings to probe whether connection is alive

» Aim for a retry timeout at the NFS/RPC level that is
higher than TCP-level re-transmit interval

» Assume that when a connection is broken the server
has no plans to respond without a retry



Advice for NFS users

» Determine what your default NFS/TCP timeout is. E.g.
— mount -o proto=tcp server:path /mnt
— Start a packet trace:

- tethereal -w /tmp/dump.trc -f "src server-name
or dst server-name” &

— Force a tcp connection to be made:
e 1s /mnt
— Force a timeout
- Break network path (e.g. disconnect client from switch)
e 1s /mnt
— Wait 10 minutes, kill tethereal, and examine dump.trc with
ethereal

- Look for timestamp of first NFS/RPC level retry (it will have
the same xid, but a different TCP sequence number) and
compare to original’s timestamp

» If the timeout is under 60 seconds, consider
specifying timeo=600 [600 tenths of a second] to the
mount command



» http://cvs.opensolaris.org/source/xref/on/usr/st

» Ric Werme’s XID talk
_ http://www.connectathon.org/talks96/werme1.html


http://cvs.opensolaris.org/source/xref/on/usr/src/uts/common/rpc/clnt_cots.c
http://www.connectathon.org/talks96/werme1.html

