
Duplicat Request Cache (DRC) for NFSv4 over TCP
Rick Macklem, University of Guelph

Chet’s Good Ole DRC for NFS over UDP

• Typically a Global LRU Cache
• Since UDP retries agressively
→ throw away Hits while "in progress"
→ cache replies for non-idempotent RPCs
→ reply from cache for Hits with cached replies
• some concern w.r.t. False Hits (reused xid values)



-2-

DRC for NFSv4 over TCP

• only retries after reconnect
→ never on same TCP connection
• 1 minute to hours later
→ other clients could still be active
→ global LRU doesn’t work well



-3-

• what about LRU per TCP connection?
• time based cache invalidation?
• size based cache invalidation?
☞ Ideally, when the client has processed the reply
→ I inv alidate when client side TCP acks receipt of reply

(at least reply is in client rcv Q)

• Wired down entries for Seqid# Ops



-4-

False Hits

• all RPCs same # (Compound)
• time cached much longer
→ risk of False Hit greater
‡ Therefore:

I assume a hit "in progress" → False Hit
allow multiple requests for same <cache key>

• use checksum on first bytes of NFS XDR
☞ I didn’t use client IP# in cache key

(DHCP lease expiry → different IP#)



-5-

When request arrives, match all:

if
same xid

‡ not "in progress"
not same socket
same length of NFS XDR
same checksum for first ≤ 100 bytes of XDR
1 hit with no Seqid# Op in it
→ reply with cached entry



-6-

During processing of Compound:

if non-idempotent Op → set flag
if Op uses a Seqid#

if same seqid# as referenced entry → Hit
free this entry
if cached entry "in progress"

drop request
else

reply from cached entry
else if next seqid# in order

free referenced cache entry
wire down this cache entry

else if first seqid#
wire down this cache entry



-7-

End of Compound Processing:
if wired down OR (non-idempotent AND below Floodlevel)

save reply in cache entry
timestamp it
note TCP seq#

else
free cache entry

Send reply
• Certain error replies aren’t cached:

NFS4ERR_GARBAGE, NFS4ERR_BADXDR,
NFS4ERR_BADSEQID, NFS4ERR_RESOURCE,
NFS4ERR_STALECLIENTID,
NFS4ERR_OLDSTATEID, NFS4ERR_BADSTATEID,
NFS4ERR_GRACE, NFS4ERR_NOGRACE,
NFS4ERR_MOVED, NFS4ERR_STALESTATEID,
NFS4ERR_SERVERFAULT ,
NFS4ERR_DELAY - Unless a Seqid# Op



-8-

Cache Invalidation Happens When:

• For Seqid# Op RPCs → next Seqid# Op processed
• Others → client TCP acks receipt of reply
OR → large timeout (12 hours)



-9-

NFSv2 and 3

• Over UDP → same old DRC
• Over TCP, Not the same as NFSv4

- no check for different TCP socket
- cache key includes RPC#

Although my current code doesn’t do so, I think:
‡ should drop request and TCP connection



-10-

Packrats: A Work starting to Progress

purely experimental, to see if agressive client
side caching will improve perf over network
interconnects will large "bandwidth * delay"

packrat threads do agressive client side data
caching onto local storage when the server
issues a Delegation to the client (whole file
copies to the client as soon as the delegation
is issued)

delegations are working, but the packrat threads
aren’t yet



-11-


