Go further, faster™

Linux NFSv4.1
Backchannel
Work In Progress

Ricardo Labiaga

ricardo dot labiaga at netapp dot com
Connectathon February 24, 2009

" Agenda

NetApp:

= Architecture Linux Backchannel Client
Implementation

— Initialization
— Call Routing
— Call Processing

" RPCSEC_GSS Authentication
" Todo's

© 2009 NetApp. All rights reserved.

" RPC Client State Machine*

NetApp:
bind/
—>(allocate connect
AGAIN

?
D

=
AL

decode

* Simplified done

© 2009 NetApp. All rights reserved.

" RPC Client State Machine*

NetApp- and Backchannel Processing
bind/

—(allocate
connect
AGAIN

?
i

* Simplified done

© 2009 NetApp. All rights reserved.

" Backchannel Initialization

NetApp:

" Initialized during Session setup
" Single slot

" Preallocates a 'struct roc_rqgst', receive and
send XDR buffers for each slot

" Will associate existing RPCSEC_GSS context
with the backchannel

" If necessary, spawns new NFSv4.1 backchannel
service (thread)

— Backchannel service listens on callback wait
queue

© 2009 NetApp. All rights reserved.

" Callback Routing

NetApp:

" Callback arrives on the connection

" RPC TCP transport xs_tcp data recv()
determines direction of the RPC
— Reply
" Find matching request and wake up waiting task
— Callback Request

® Obtain previously allocated 'struct roc_rgst' and
read the data into the preallocated buffers

® Place request in the callback queue

© 2009 NetApp. All rights reserved.

" Callback Processing

NetApp:

" NFSv4.1 callback service grabs 'struct rpc_rgst’
from the callback wait queue and process it

" Common authentication and dispatch
functionality factored out of svc_process() into
Svc_common_process()

" Backchannel's bc_svc process() builds a new
'struct svc_rgst' and invokes
Svc_common_process()

svc_process() { bc_svc_process() {
// Setup XDR response // Construct 'struct svc_rgst'
svc_common_process(); svc_common_process();

svc_send(); bc_send();

} }

© 2009 NetApp. All rights reserved.

" GSS Context Initialization

NetApp:

RPC Client Server

(cctx, token) = GSS _init_sec_context()

RPCSEC_GSS_INIT(token)

-
»

sctx = GSS_accept_sec _context(token)

ctx_handle_fs = func(sctx)

ctx_handle fs, seq_window

<
<«

ctx_handle_fs: (ctx, seq_window, seq)

© 2009 NetApp. All rights reserved.

" Backchannel GSS Context Setup

NetApp:

RPC Client Server

ctx_handle_fs: (cctx, seq_window, curr_seq)
ctx_handle_fc: (cctx, seq_window, bc_seq_window_bitmap)

CREATE_SESSION(..., ctx_handle_fs, ctx_handle fc)

-

sctx = func'(ctx_handle fs)

Server associates ctx_handle fc with sctx and
seq_window :
sctx ~ func'(ctx_handle_fs) ~ func(ctx_handle_fc)

A

© 2009 NetApp. All rights reserved.

" Data Exchange (Forechannel)

NetApp:

RPC Client Server

ctx_handle_fs: (cctx, seq_window, seq)

RPCSEC_GSS DATA(ctx_handle fs, seq)

sctx = func'(ctx_handle fs)

GSS_VerifyMIC(sctx)
RPC processing...

A

© 2009 NetApp. All rights reserved.

" Callback

NetApp:

RPC Client Server

GSS_GetMIC(sctx)
ctx_handle fc= func'(sctx)

RPCSEC_GSS DATA(ctx_handle fc, seq_fc)

&
<

ctx_handle_fc: (cctx, seq_window, bc_seq_window_bitmap)
GSS_ VerifyMIC(cctx)

v

© 2009 NetApp. All rights reserved.

B8 Linux Client

NetApp:

RPC Client

rpc.gssd

i GSS_init_sec _context()

cctx, token

v

rpc_run_task() struct gss_cl_ctx

gss_cred_init()

RPC Callback
Service

svc_authenticate

Callback

Callback processing

v

© 2009 NetApp. All rights reserved.

" Backchannel RPCSEC_ GSS Context
netapp Gaching

" Can't use server side caching as is

— Assumes context is created by the server
and unique

" Backchannel context handle is not generated by
the client

" Different NFS servers may generate clashing
context handles

" The client may in turn be an NFS server and
generate a clashing context handle

" We know the credentials we used to create the
session, compare directly with that

© 2009 NetApp. All rights reserved.

" Backchanel on New Connection

NetApp:

" Unlike NFSv4, the NFSv4.1 backchannel
connection is initiated by the client

— Can't simply have backchannel service listening
on socket: svc _recv()

" Backchannel communication needs to be
received over the 'struct rpc_xprt' and not the
'struct svc_xprt

" Allocate new 'struct roc_xprt and a new 'struct
rpc_cint for every new connection

— 'struct rpc_cInt' needed for authentication
information

© 2009 NetApp. All rights reserved.

" Client Backchannel ToDo’s

NetApp:

" Need SessionlD and slotID verification
" Need slot replay cache — single slot

= Backchannel Only connection

— Use existing mechanism that preallocates 'struct
rpc_xprt's

" Implement RPCSEC_GSS backchannel

© 2009 NetApp. All rights reserved.

NetApp:

Thank you!

ricardo dot labiaga at netapp dot com

© 2009 NetApp. All rights reserved.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

