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Pool Internals

● More or less like an Object Store 
● Metadata (size, checksum,  acl, ...) stored in the namespace
● Local cached copy of metadata for inventory verification on startup
● Late data mover protocol binding
● Multiple protocols can be used to access same file
● policy driven (last access, total time, protocol) idle clients can be dropped
● Updates matadata on close
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Pool internals
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Disk Cache Access Protocol (dcap)

● Our attempt to invent NFSv4.1 
● independent path for metadata operations and IO (control and data lines)
● poor man sessions on control line
● READ/WRITE/CLOSE on data line
● data line bind to TCP connection (which is actually bad)

● on client disconnect all  associated  resources are freed
● client library for the most platforms used in Physics 

DCAP NFSv4.1

mds ds mds ds

OPEN X X

READ X X

WRITE X X

CLOSE X X

LOOKUP X X

READDIR x X X
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Request Sequence Diagram
door namespace pool manager poolclient
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Request Sequence Diagram (pNFS)
door namespace pool manager poolclient
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( what I usually run on Bake-a-thon)
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Little bit of OO

case nfs_opnum4.OP_PUTFH:
 return new OperationPUTFH(call);

case nfs_opnum4.OP_READ:
return new OperationREAD(call);

case nfs_opnum4.OP_WRITE:
      returnreturn new OperationWRITE(call);

case nfs_opnum4.OP_PUTFH:
 return new OperationPUTFH(call);

case nfs_opnum4.OP_READ:
return new DSOperationREAD(call);

case nfs_opnum4.OP_WRITE:
      returnreturn new DSOperationWRITE(call);

MDS

DS
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Ok, not a rocket science, but

● No stared globals between operations
● No requirement to support NFSv3/2 at the same time
● No shared API with other components ( no vnode, nnode and so on )
● User space code (!!!)
● I pay for it with performance, you pay for it with lines of code

● our NFS server is ~ 8K lines of Java code
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Easy to create custom servers

case nfs_opnum4.OP_PUTFH:
 return new OperationPUTFH(call);

case nfs_opnum4.OP_READ:
return new OperationFailOnSecondREAD(call);

case nfs_opnum4.OP_WRITE:
      returnreturn new OperationWRITE(call);
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Benefits for me

@Test
 public void testWrongIOmode()  {
    .....
        call = ... ; // generate request with BAD IO MODE
         operationLayoutGet = NFSv4OperationFactory.getOperation(call);
        opResult = operationLayoutGet.process();
        assertNFSState("Invalid IO mode did not return BADIOMODE", 
                NFS4ERR_BADIOMODE, opResult.getStatus());
}

● ~130 different unit tests (do not require server to run)
● some test cases stacked into poor man client
● can be turned into functional test suite
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 /* FIXME: */

● Callbacks
● Finally I got bidirectional RPC to work

● Infrastructure for byte-range lock
● dCache's internal architecture supports create once read many

● Striping on read and write
● we can't really stripe on write due to backend tape system

● GSS authentication 
● what we need is actually X509

● Re-implementation of sessions
● current one is ugly
● reply cache is missing
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Thank You!

Code and Info
@

http://www.dcache.org
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