
Tigran Mkrtchyan dCache.ORG

Tigran Mkrtchyan
for dCache Team

dCache NFSv4.1 server

Tigran Mkrtchyan dCache.ORG

Pools
(Data Server)

Pools
(Data Server)

Door

dCache design

Message passing layer

JVM JVM JVM

Door(s)
(clients entry point) Pool Manager

(requests scheduler)
Name Space
(MetaData Server)

Pools
(Data Server)

DBMS
dcap

ftphttp
nfs

Tigran Mkrtchyan dCache.ORG

Pool Internals

● More or less like an Object Store
● Metadata (size, checksum, acl, ...) stored in the namespace
● Local cached copy of metadata for inventory verification on startup
● Late data mover protocol binding
● Multiple protocols can be used to access same file
● policy driven (last access, total time, protocol) idle clients can be dropped
● Updates matadata on close

Tigran Mkrtchyan dCache.ORG

Pool internals

Message passing layer

Space Management Request Queue(s)
(can be one per protocol)

Data Mover Interface

dcap http nfs ftp

Tigran Mkrtchyan dCache.ORG

Door internals

Message passing layer

Door Generic Layer

Network Generic Layer

dcap http ftpnfs

Tigran Mkrtchyan dCache.ORG

Disk Cache Access Protocol (dcap)

● Our attempt to invent NFSv4.1
● independent path for metadata operations and IO (control and data lines)
● poor man sessions on control line
● READ/WRITE/CLOSE on data line
● data line bind to TCP connection (which is actually bad)

● on client disconnect all associated resources are freed
● client library for the most platforms used in Physics

DCAP NFSv4.1

mds ds mds ds

OPEN X X

READ X X

WRITE X X

CLOSE X X

LOOKUP X X

READDIR x X X

Tigran Mkrtchyan dCache.ORG

Request Sequence Diagram
door namespace pool manager poolclient

request
lookup/create

select pool

start data mover

IO

Tigran Mkrtchyan dCache.ORG

Request Sequence Diagram (pNFS)
door namespace pool manager poolclient

OPEN
lookup/create

select pool

start data mover

IO

LAYOUTGET

Tigran Mkrtchyan dCache.ORG

NFS server internals

NFSv4.1
(mds)

FS layer

Device
Manager

dCache
core dCache

pool

NFSv4.1
(ds)

Tigran Mkrtchyan dCache.ORG

(what I usually run on Bake-a-thon)

NFSv4.1
(mds)

local FS

Faked
Device

Manager

NFSv4.1
(ds)

Tigran Mkrtchyan dCache.ORG

Little bit of OO

case nfs_opnum4.OP_PUTFH:
 return new OperationPUTFH(call);

case nfs_opnum4.OP_READ:
return new OperationREAD(call);

case nfs_opnum4.OP_WRITE:
 returnreturn new OperationWRITE(call);

case nfs_opnum4.OP_PUTFH:
 return new OperationPUTFH(call);

case nfs_opnum4.OP_READ:
return new DSOperationREAD(call);

case nfs_opnum4.OP_WRITE:
 returnreturn new DSOperationWRITE(call);

MDS

DS

Tigran Mkrtchyan dCache.ORG

Ok, not a rocket science, but

● No stared globals between operations
● No requirement to support NFSv3/2 at the same time
● No shared API with other components (no vnode, nnode and so on)
● User space code (!!!)
● I pay for it with performance, you pay for it with lines of code

● our NFS server is ~ 8K lines of Java code

Tigran Mkrtchyan dCache.ORG

Easy to create custom servers

case nfs_opnum4.OP_PUTFH:
 return new OperationPUTFH(call);

case nfs_opnum4.OP_READ:
return new OperationFailOnSecondREAD(call);

case nfs_opnum4.OP_WRITE:
 returnreturn new OperationWRITE(call);

Tigran Mkrtchyan dCache.ORG

Benefits for me

@Test
 public void testWrongIOmode() {

 call = ... ; // generate request with BAD IO MODE
 operationLayoutGet = NFSv4OperationFactory.getOperation(call);
 opResult = operationLayoutGet.process();
 assertNFSState("Invalid IO mode did not return BADIOMODE",
 NFS4ERR_BADIOMODE, opResult.getStatus());
}

● ~130 different unit tests (do not require server to run)
● some test cases stacked into poor man client
● can be turned into functional test suite

Tigran Mkrtchyan dCache.ORG

 /* FIXME: */

● Callbacks
● Finally I got bidirectional RPC to work

● Infrastructure for byte-range lock
● dCache's internal architecture supports create once read many

● Striping on read and write
● we can't really stripe on write due to backend tape system

● GSS authentication
● what we need is actually X509

● Re-implementation of sessions
● current one is ugly
● reply cache is missing

Tigran Mkrtchyan dCache.ORG

Thank You!

Code and Info
@

http://www.dcache.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

