
Trond Myklebust 

<trond@netapp.com> 

Application control 
of NFS client data 
caching 

1 



Why let applications manage kernel 

caching? 

 Applications sometimes have a better idea. 

– Knowledge of the nature of the file 

– Knowledge of the nature of the data 

– Knowledge of when data is being changed 

2 



2 use cases 

 Clustered applications 

– Distributed lock managers 

– MPI 

 Prototyping of new caching mechanisms and 

policies 

– Emulating new delegation types 

 Writeable directory delegations 

 Byte range delegations 

 

3 



Implementation 

 Allows one process at a time to declare itself 

to be a cache manager for a specific 

file/directory/symlink 

– Must have write access to the file 

 The cache manager then takes over the role 

of deciding when to revalidate the file caches. 

– Cache manager role is tied to the file descriptor 

 If the file descriptor is closed, the kernel resumes 

management of the caches 

4 



Functionality 

 All driven by ioctl()s 

 The following functionality is implemented 

– Refresh entire data cache 

– Refresh byte range 

– Flush attribute cache 

– Return delegation (NFSv4/4.1 only) 

 ioctl()s apply to files, directories, and symlinks 

– All NFS versions 

5 



Future work 

 Extend directory cache manager functionality 

to cover entire subtrees 

– Would allow a single cache manager to act as 

a lock manager for an entire filesystem or 

more. 

– Study the effects of writeable directory 

delegations 

6 



7 


