
<Insert Picture Here>

RFC 3530: Persistent State and Lessons in Protocol
Engineering
Bill Baker and Piyush Shivam

2

Overview

• Implementation experiences with NFSv4 persistent state

• Highlight flaws (fatal?) in our current process of protocol
engineering

• Present and brainstorm mechanisms to fix the flaws

3

NFSv4 Protocol State in 3530

• NFSv4 is a stateful protocol
– Locking state: opens/locks/delegations

• Loss of server locking state causes GRACE period

• Persistent locking state
– Save and restore all locking state to/from stable storage

4

You got to be kidding.. really?

• Resilience to edge conditions – a more “graceful” server
– 9.6.3.4.3.. “The amount of information the server records in stable storage is in inverse proportion to how

harsh the server wants to be whenever the edge conditions occur.”

• 3530-bis recommends it
– 9.14.1..“In the case of migration, the servers involved in the migration of a filesystem SHOULD transfer all

server state from the original to the new server”.

• 90 seconds downtime is not always acceptable.

• Try recovering state for a 100,000 state objects
– 90 seconds may not be sufficient

5

But, is there any real use case?

• Whenever the server loses volatile server state

– File system migration (killer feature of 3530?)

– NFS service restart (therapeutic service reboot?)

– Full system restart (system upgrades)

– Rolling upgrades: Failover/Failback (clustered services)

6

Persistent state: two-key concepts

• State-save
– Record all NFSv4 state in memory to disk
– MUST be consistent with the state in volatile memory
– MUST not regress regular NFS performance

• State-restore
– Restoring all NFSv4 state from disk to memory
– MUST never disable GRACE period spuriously

7

Persistent State Implementation

• First implemented under file system migration
– Save and restore protocol state only for the file system(s) in play

• Extended it to full service restart
– For all file systems having NFS protocol state
– Unplanned; born in a moment of frustration with GRACE period
– Non-stop rebooting server (every 10 seconds) on the event floor

8

client

Server 1 Server 2

1. “Freeze” changes to
protocol state

3. Transfer fs data and protocol state
(state-save on 1 and state-restore on 2)

2. NFS4ERR_DELAY

4. NFS4ERR_MOVED

5. GETATTR
(fs_locations)

client requests
redirected

File System Migration: High Level Design

9

Challenges

• Ran into a myriad of issues: implementation and
protocol

• See Dave Noveck's ID (currently at 40 pages)
http://tools.ietf.org/html/draft-ietf-nfsv4-rfc3530-migration-update-01

http://tools.ietf.org/html/draft-ietf-nfsv4-rfc3530-migration-update-01

10

client

Server 1 Server 2

Interesting Implementation Issues

- Stateids MUST be unique across servers
9.1.3.. “Each stateid must be unique to the server.”

- Client can cache file handles forever;
 Server 1 must provide NFS4ERR_MOVED eternally

- Client may already have a lease with Server 2
 Server 2 must know how to reconcile the leases
 maintain two leases? merge two leases?

4. NFS4ERR_MOVED

11

client

Server 1 Server 2

Multiple leases with a single client long form

LF1-SF1

LF1-SF1

1st fs migrates

Server 1

LF1-SF1'

Server
reboots

2nd fs migrates

LF1-SF1'

12

client

Server 1 Server 2

The problem with multiple leases

LF1-SF1

LF2-SF2

LF1-SF1

LF2 The locks under LF1-SF1
are still in play!client

reboots

1st fs migrates

13

client

Server 1 Server 2

Diverging open owner sequence ids

oo1/seqid1 oo1/seqid1

oo1/seqid2
2nd fs migrates

Conflicting sequence
ids at server 2 !

opens/closes

1st fs migrates

14

What a mess.. how do we fix all this?

• Community got together to fix the issues

• 3530-bis has some of the fixes
– openowners must be per file system for migration

• Dave's internet draft address other issues in detail
http://tools.ietf.org/html/draft-ietf-nfsv4-rfc3530-migration-update-01

• Serious implementations: 3530-bis + migration
update draft

http://tools.ietf.org/html/draft-ietf-nfsv4-rfc3530-migration-update-01

15

Fixing simple protocol problems

• Creative Interpretation of the spec

• Protocol abuse
– NFS4ERR_LEASE_MOVED

– How does a client clear the LEASE_MOVED condition?

• { PUTFH, GETATTR fs_locations }
•
• {PUTFH, GETATTR fs_locations, RENEW clid }

– This is a HACK. Why are we reduced to this?

16

Beyond the simple case ...

• Convention wisdom:

 minor versions, RFC-ng

• Ok, but largely ineffective

So, to make feature X work in RFC 3530, wait for MV2?

• The feature was DOA

For example, transparent state migration in 3530

17

The truth about NFSv4 minor versions

• The minor version mechanism is generally good
enough to fix protocol flaws

• Good, but what really happened?

minor versions were hijacked as a means of adding new
features

closed the door on it a means to fix protocol bugs

• This IS the bug!

18

Maintenance vs. development trains

• Everyone knows this model, eh?

• Why aren't we using this model?

Release N Release N+1

Release N.0.1

19

Maintenance vs. development trains

NFSv4.0 NFSv4.1.0

NFSv4.0.1 TA-DA!

NFSv4.2.0

NFSv4.1.1

20

Minor version numbers

Same rules as minor versions, in fact, even more
strict, only to fix protocol bugs that cannot be fixed
otherwise, no new features, only to fix features
already present in the RFC

0 NFSv4.0

1 NFSv4.1

401 NFSv4.0.1

2 NFSv4.2

411 NFSv4.1.1

21

Conclusions & Summary

• Implementation experience with persistent state
exposed serious protocol issues in 3530

• Expect bugs, both in code & specification

“Only Human”

We have to have a way to fix bugs in a timely fashion,
without resorting to hacks.

22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

