
26 février 2014 | PAGE 1

IO Proxies via Ganesha/9P

Philippe DENIEL (philippe.deniel@cea.fr)

 PAGE 2

Manycore processors imply a reduced ratio of memory per
core
The operating system will have less memory buffers for its
own needs

Less room in the OS for the file systems
Even the TCP/IP network stack may become too expensive and be replaced by lower
level but faster paradigm (like RDMA)

Kill the bottleneck!!
Need for mechanisms to manage larger data without generating bottlenecks
The former approach used in SMP is not valid anymore and would lead to an explosion
of the number of clients

 IO Challenges for 2020

 PAGE 3

Using IO Proxy

Sets of node running a simulation job be served by a
dedicated agent called IO Proxy

The proxy is the only “data view provider” to the job

The proxies are the only actual clients of storage resources (kill bottlenecks)

The proxy is the natural place for optimization based on hints provided by upper layers
(IO Libraries and simulation code)

Impact on data cache policies (keep only what is tagged as essential)
Impact on metadata cache policies (do not flush what will be used soon)

 PAGE 4

IO proxies inside future architecture

LUSTRE
Compute data

NFS
Shared with
workstations

IO Proxies

MIC Nodes

Compute Cluster

Storage servers

MIC Nodes MIC Nodes MIC Nodes

IO Proxies

 PAGE 5

IO Proxies

IO Proxies are internal to the future compute machine
Single path for computes nodes to access data

Lustre Filesystems
NFS remote servers

IO Proxies as “fuse”
A single “evil” command can easily collapse a storage system
A “rogue study” will only mess its own proxy

Use of internal metrics will help identifying toxic behaviors
In such a case, the proxy would slow pause, pause or even stop to protect the
back-end

A major failure on the IO Proxy will crash it, preventing the trouble to contaminate the
whole machine

 PAGE 6

What we need for building an IO Proxy

Three key questions make the core of the design

Data are moving on a network from IO Proxies to compute nodes
What kind of transport protocol for the best efficiency ?
- Must have lightweight implementation on MIC nodes
- Compute codes should not be limited by IOs: network must be fast

From the MIC node's point of view, an IO Proxy is a file server
What kind of file server's protocol will we use ?
- Should have lightweight client implementation due to MIC's constraints
- Should provide full POSIX semantics

What kind of file server ?
- Must be able to access LUSTRE and NFS (at least)
- Must support the chosen network and file server protocols
(see question 1 & 2)

 PAGE 7

Efficient networking: the RDMA transport layer

RDMA: Remote Direct Memory Access

A machine allows another to write directly in a few
windows in its own memory

Simpler implementation compared to TCP/IP
A de facto standard via Infiniband, iWARP and RoCE technologies
LAN dedicated but fast network model
Bypass several OSI layers to optimize performances

 PAGE 8

9P is a good choice for IO Proxy

9P fits IO Proxy's requirements
9P is a very lightweight protocol
9P is fast to interpret

Use little-endianess making XDR-like marshaling unnecessary
9P is buffer oriented, which fits well RDMA transport
9P make zero-copy based implementation easy and requires less memory
9P has all you need to implement full POSIX semantics
9P is quite complete (including lock support and xattr support)
9p.2000L client side is implemented inside the kernel (as v9fs) and is a living piece of
code

 PAGE 9

File Server: Using Ganesha as an IO Proxy

What makes Ganesha fitting this need ?
Ganesha's framework was opened enough to add 9P support to it

Integrating 9P took a few months

Ganesha layered architecture allowed to add RDMA as new transport feature
Integration of RDMA as a transport layer
Using Mooshika library

It embeds all of the mechanism to serve as a IO proxy
Has both LUSTRE and NFS back-ends

 PAGE 10

Mooshika : RDMA transport layer

CEA is developing Mooshika, a user space library
designed to provide easy RDMA integration in user space
program

Mooshika was designed to be integrated to Ganesha
Mooshika provides RDMA support for 9P/RDMA implementation
Mooshika provides RPC/RDMA support for NFS/RDMA implementation

Mooshika is released as open source software
Even outside Ganesha, an easy-to-use API designed for file server is a useful piece of software
Mooshika will be a standalone project

 PAGE 11

QUESTIONS ?QUESTIONS ?

IO is one of Jupiter's moons

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

