

0

N

DN

UF

S E

RE

Y

R

N

C

E

F

S

NFSv4 Open Source Implemetation Update

William A. (Andy) Adamson CITI University of Michigan andros@citi.umich.edu

September 22-24

2003 NFS Industry Conference

Page 1 of

F

S

C

0

N

DN

UF

S E

RE

R

N

C

E

T

Y

Outline

- Brief history
- Roadmap and Status
- A scaling issue
- Related work

S E

R

Y

R

Ε

N

C

E

Brief History

- NFSv4 Open Source Reference
 Implementation project
- Sponsored by Sun Microsystems
- IETF Reference Implementation
- Linux client and server, FreeBSD Client

D N

UF

S E

R

Y

R

Ε

N

C

E

F

S

Brief History

- Fleshing out protocol spec
- Flushing out protocol bugs
- Complete 2.4 implementation, but isolated from NFSv2/v3

0

N

DN

UF

S E

RE

Y

R

N

C

E

S

Brief History

- Delivered the critical building blocks in Linux 2.5
 - Complete rewrite
 - Integrated with NFSv2/v3
 - Identical performance
- Some pieces still to come in Linux 2.6
 - As "bug fixes" not new features

N O

UF

S E

RE

Y

R

N

C

E

DN

F

S

Road map for Linux 2.6

- Full featured NFSv4 Client and Server by years end
 - Share, byte-range lock, and delegation state
 - Kerberos v5
 - ACL
 - Reboot recovery

0

N

DN

UF

S E

R E

Y

R

N

C

E

S

Linux 2.6 Status

- RPCSEC_GSS
 - Multiple mechanism framework
 - Kerberos v5 mechanism
 - Privacy coming soon
 - Kernel GSS context cache and up call
 - Server side in process
 - SPKM3 mechanism (PK based)
 - Submitted soon

D

UF

S E

R

Y

S

C

Ω

N

R

Ε

N

C

E

Linux 2.6 Status

- Principal to ID kernel cache and ACL's
 - Client and server kernel cache and up call
 - Server side just submitted
 - POSIX ACL mapping implementation
 - Ready for submission, depends on ID mapping

0

N

D N

UF

S E

R

Y

R

Ε

N

C

E

S

Linux 2.6 Status

- State
 - Server: Open share state, and byte-range locking in 2.6
 - Client: Open share state, and byte-range locking re-write in progress
 - Delegation: client and server implementation coming soon

0

N

DN

UF

S E

TR

RE

N

C

E

Y

F

S

Linux 2.6 Status

- State Recovery
 - Client reboot recovery
 - Initial framework coded and tested
 - Needs integration with client state re-write
 - Server reboot recovery
 - Coming soon

September 22-24

2003 NFS Industry Conference

Page 1 of

Open State Scaling

- Whole file locking based on access and deny bits (Windows 'op locks')
- State: Open owner, open stateid
- Client presents open owner at OPEN
- Open stateid returned by server and binds open owner to open file
- READ/WRITE use open stateid

Open State Scaling

- Client: open owner is unit of serialization
 - One rpc in flight with OPEN,
 OPEN_CONFIRM,
 OPEN_DOWNGRADE,CLOSE
- Client chooses granularity of open owner
 - One open owner per pid
 - One open owner per credential

RE

N

C

E

Y

D

UF

S E

R

Y

S

C

0

N

R

Ε

N

C

E

- Server: open owner is unit of state bookkeeping
 - Creates state for each new open owner
 - Releases state after last CLOSE
- Server: open stateid is bumped on each OPEN on an existing open owner/file tuple
 - Hard-links: READ/WRITE stateid possibly invalidated => client resends

D

UF

S E

R

Y

S

C

Π

N

R

Ε

N

C

E

Open State Scaling

- More open owners means less serialization on client, more state on server
 - Smallest number for saleability
 - Large enough number so that open owner serialization does not hurt client performance

N O

UF

S E

R

Y

R

Ε

N

C

E

DN

F

S

Open State: Linux Client

- Pool of open owners
 - First: map one open owner per open file (lots of server state)
 - When OLD_STATEID recovery coded, client can respond to hard link READ/WRITE resends: map one open owner to many open files
- Discover how few open owners is needed

Lock State Scaling

- Same issues as Open State
- Small number of lock owners
 - Would like to use one for the whole client
- Client tests for local POSIX lock conflicts before putting request on the wire
 - If local conflicting lock, no RPC sent

N O

UF

S E

RE

Y

R

N

C

E

S D N

F

FreeBSD Client

- Rebased from OpenBSD to FreeBSD
 - Target: Mac 10X client
- Vnode ops with Open state
- RPC layer separated from NFS
- Share user daemons with Linux
- Beginning submission process to FreeBSD kernel stream

D

UF

S E

R

Y

S

C

Π

N

R

Ε

N

C

E

Related Work

- Principal to ID mapping
 - New nsswitch services being prototyped
 - Secure SASL/GSSAPI LDAP mapping requests implemented
 - Client ACL tool designs being considered

D N

F

E

R

Ε

N

C

E

U

S

R

Y

S

Related Work

^a Naming, Migration, and Replication

- Global name space implementation
 - Extended DNS and Automount daemon
- Migration and replication implementation
 - Use of the FS_LOCATIONS attribute
- Mutable replication implementation
 - Server redirect, server to server protocol
- •Work by Jiaying Zhang jiayingz@umich.edu

Related Work

NFSv4 for cluster computers

- Symmetric NFSv4 servers
 - Parallel access, NFSv4 state sharing
- Experimenting with protocol extensions
 - For MPIO applications
 - For load balancing

E

F

S

C

N O

U F

S E

R E

R

N

C

E

T

Y

D N

Questions?!

http://www.citi.umich.edu

September 22-24

2003 NFS Industry Conference

Page 1 of