

C N O F S DN U F S E R R E N C E

Database over NFS beepy's personal perspective

Brian Pawlowski

Vice President and Chief Architect

Network Appliance

beepy@netapp.com

September 22-24

2003 NFS Industry Conference

Page 1 of 47

0

N

R

E

N

C

E

N

D

UF

S E

R

Y

F

S

What is a database?

September 22-24

2003 NFS Industry Conference

Page 2 of 47

D

U

R

N

F

R

E

N

C

E

S E

S

A Database[™]

- A structured data storage scheme that allows
 - Fast access to records within the set of data based on a variety of queries
 - Transactional commits ensuring updates are atomic and unique
 - Ability to generate reports based on relationships and filters of the data
 - Ability to recover consistent points within a stream of transactions following an error

Simple database musings

- Assume a database is 250GB or bigger
 - Just to get in the ballpark
- Databases are deployed typically to store business critical data
 - Even a small instance for a small business will be holding customer billing information
- Databases are assumed to be highly available and highly reliable
 - Consider any business interaction in your life a bank, credit card, airline ticket, mutual fund, telephone bill, Fandango - you expect business transactions to work perfectly

C

0

N

F

R

E

N

C

E

S E

N

D

U

R

S

D

U

R

F

S

C

Π

N

F

R

E

N

C

E

S E

Implications for storage

September 22-24

2003 NFS Industry Conference

Page 6 of 47

N O

DN

UF

S E

R

Y

R

Ε

N

C

E

F

S

First thoughts

- Availability
 - Even the simplest database deployment assumes redundant storage - mirroring or parity RAID
 - Simple deployments assume recovery in face of data loss (if only from backup tape)
- Availability too
 - Clustering of components including fans, power supplies, processors and datapaths

D

U

R

Y

F

S

C

0

N

F

R

E

N

C

E

S E

Second thoughts

- Database workloads are distinctive
 - Primary concern is random I/O workload due to keyed transactions
 - Though data is laid contiguously on disk, assume it was written randomly and later read randomly
 - There are sequential components
 - The redo logs and transaction logs for recovery
 - Data mining operations for analysis execute sequential scans
- But first order concerns are with the random I/O component

D

U

R

S

C

0

F

R

E

N

C

E

S E

Third thoughts

- Networks are as fast as direct attach storage connections
 - Started 100:1, now 1:1 (or better)
 - Commodity, high performance switches
- Flexible architecture for storage deployment
 - Improves resource utilization
- Regardless of access method data management is required in storage device

0

F

R

E

N

C

E

N

U

R

DN

S E

F

S

Fourth thoughts

- Networking storage yields other benefits
 - Offload data mining and backups
 - Enable disaster recovery solutions
- One thing I'll say for it, networking's cool

D

U

S

R

F

S

C

0

N

F

E

R

E

N

C

E

e.g. Database recovery

Database Recovery Scenario - An Example

- 300 GB database and the entire database requires recovery
 - Tape recovery time is 60 GB/hour
 - Normal recovery time is 5 hours + log replay time
- SnapRestore reverts volume to same state as when backup was taken. Duration - 3 minutes
 - Total recovery time: 3 minutes + log replay time

0

F

R

E

N

C

E

S E

N

D

U

R

S

Common themes

- Networking simplifies backup and disaster recovery
 - Offload data mining and backups
 - Enable disaster recovery solutions
 - The storage system is more than a JBOD
 - Snapshots or other fast backup method
 - No single point of failure
- Provisioning new and reconfiguring old storage must be transparent
 - Common maintenance tasks must be non-disruptive

D

U

T

R

Y

SE

N

F

S

C

0

N

F

R

E

N

C

E

Why NFS?

September 22-24

2003 NFS Industry Conference

Page 13 of 47

0

N

D N

UF

S E

R

Y

R

E

N

C

F

F

S

First,	why	IP	networking
--------	-----	----	------------

- No significant difference between networking technologies (FC vs. Ethernet)
 - Similar latency or bandwidth
- Ethernet and TCP/IP costs lower
 - People
 - Tools
 - Infrastructure

D

R

UF

S E

S

C

Π

N

R

E

N

C

Enter iSCSI

- iSCSI provides storage access capabilities similar to FC SAN
 - But uses standard Ethernet and TCP/IP
 - Cost reduction over FC deployment
- Both techniques simply encapsulate SCSI commands over a network
 - But don't provide anything much more than a direct connect SCSI cable

Ω

N

R

E

N

C

E

N

D

UF

S E

R

S

Wait, we already have...

- NFS provides high speed data access on a network
- Sophisticated data management architectures can be built
- Leverages existing infrastructure

D

U

S

R

S

C

Π

F

E

R

E

N

C

E

Files vs. blocks

- Things a block storage device knows:
 - All blocks may have data
 - The geometry of underlying RAID devices
- Things a file storage device knows:
 - User friendly naming and organization of data
 - The set of blocks that have allocated data, comprise a file, and comprise a file system
 - The set of users that have permission to access each block
 - Which application has locks on each block
 - The geometry of underlying RAID devices

F

R

E

N

C

E

N O

DN

S E

U

R

Y

F

S

NFS (NetApp) filers today

- Provide sophisticated data management
 - Snapshots and IP mirroring
 - Full redundancy
 - Fast recovery
 - Online expansion (simple to grow storage pools), offload volume management
- High performance scalable solution
- Cost effective near-line storage solutions for disaster recovery and archiving

N O

DN

UF

S E

R

Y

R

E

N

C

E

F

S

Why not files and NFS?

- Overhead of network processing on host
 - But NFS (or iSCSI) is suitable for most database deployments
- Certification of applications
 - Block storage solutions are de facto standard for database
- Industry investment
 - Though simpler and more cost effective, blocks is he easy answer compare to NFS

D

U

R

F

S

C

0

N

F

R

E

N

C

E

S E

Alternatives to NFS?

- Local file system to direct attach storage
 - Provides name space and management
 - No networking limits flexibility (e.g. disaster recovery)
- Clustered file system
 - Typically SAN-based
 - Complicated deployment
 - Requires more support on database server

D

U

R

Y

F

S

C

0

Ν

F

R

Ε

N

C

E

S E

NetApp and NFS

- NetApp has exposure to all OS / NFS Clients
 - AIX, Solaris, HP/UX, Linux, others
 - Lots of customer installations
- Applications of Interest
 - Databases (Oracle, DB2, others) 40% of storage deployment
 - Large Apps (Lotus, SAP, Rational, SAS, others) many database related
 - Home Directories / Smaller Apps
- Trends of Interest
 - NFS/NAS becoming infrastructure of choice for "DataCenters"

D

U

R

Y

S E

F

S

C

0

N

F

R

E

N

C

E

Best practices

September 22-24

2003 NFS Industry Conference

Page 22 of 47

N

F

R

E

N

C

F

S E

N O

D

U

R

S

- Issues in database deployment on NFS can be decomposed to
 - Storage
 - Network
 - NFS server
 - NFS client
 - Database
- Always install recommended software releases and patches by vendor
 - For client and server and database
 - Investigate vendor tuning guides

F

S

C

0

N

F

E

R

E

N

C

E

N

D

U

S

T

R

Y

2003 NFS Industry Conference

Page 24 of 47

September 22-24

D

U

T

R

Y

SE

N

F

S

C

0

N

F

R

E

N

C

E

Storage

September 22-24

2003 NFS Industry Conference

Page 25 of 47

R

UF

S E

R

Ε

N

C

E

S

- Your storage solution should support
 - Fast backup and recovery (e.g. Snapshot and Snaprestore) that integrates with your database
 - Disaster recovery solution must exist (e.g. Snapmirror to a NetApp NearStore R150)
- Capacity on demand, on-line expansion, autosupport
- Premium customer support from vendor
- You get the picture

N O

DN

UF

S E

R

Y

R

E

N

C

E

F

S

- Redundant components in storage to increase availability
 - Redundant power circuits should be used
 - Redundant networks should go through redundant switches
- But recognize that redundancy is one aspect of availability
 - Does your solution minimize necessary scheduled downtime?
 - Network Appliance advocates simple to manage storage solutions

F

R

Ε

N

C

E

N O

DN

S E

U

R

F

S

- The number of spindles serving data limits performance
 - But not all database deployments require large numbers of spindle
 - Know your database performance needs choose a flexible storage solution to allow responding to changing needs
- Understand peak load requirements
 - Including performance in degraded mode (broken disk or controller)
 - When possible schedule common online maintenance (backups) for non-peak load time

F

R

E

N

C

E

S E

N O

DN

U

R

Y

F

S

- Optimize "volume" size to simplify backup and disaster recovery
 - Multiple volumes vs. a large single volume is pretty irrelevant from the database perspective
 - Consider disaster recovery solutions that also enable offload of backup
- Balance database deployment against other application deployment when using shared resources
 - Maintenance of unrelated applications can affect database availability

D

U

T

R

Y

S E

N

F

S

C

0

N

F

R

E

N

C

E

Network

September 22-24

2003 NFS Industry Conference

Page 30 of 47

D

U

R

F

S

C

N

F

R

E

N

C

S E

- Use adequate networking
 - Can choose 100BaseT or Gigabit based on performance requirements
 - Configure networks for autonegotiation and ensure full duplex operation
- Redundant networking for high availability
 - Including paths through different switches
- Separate database network from backup and other traffic network
 - Switched networking helps here
- "Jumbo frames" can help

D

U

T

R

Y

SE

N

F

S

C

0

N

F

R

E

N

C

E

NFS server

September 22-24

2003 NFS Industry Conference

Page 32 of 47

S E

R

R

E

N

C

F

- Tune sufficient NFS server contexts/messages for highly concurrent database client
 - Some servers are tunable
- NFS Version 3 is recommended
- TCP is recommended
 - Keep abreast of latest patches

0

N

F

R

E

N

C

E

N

D

U

R

S E

F

S

NFS server

- Investigate vendor tuning suggestions for NFS
 - Networking buffer space
 - TCP window size

September 22-24

2003 NFS Industry Conference

Page 34 of 47

D

U

T

R

Y

S E

N

F

S

C

0

N

F

R

E

N

C

E

NFS client

September 22-24

2003 NFS Industry Conference

Page 35 of 47

D

U

R

S

0

N

F

R

E

N

C

E

S E

What do databases want?

- A name space and expandable storage
- Basic system services to fetch data
- Prefer OS to stay away otherwise
 - Databases like raw storage because they prefer to manage their own buffer space

0

N

F

R

E

N

C

E

S E

N

D

U

R

S

NFS client directio

- directio means "no host caching"
 - Enabled in two ways
 - flag on the open command (O_DIRECT)
 - with a mount option
- Why direct I/O is important
 - Databases manage their own buffer pools
 - Host caching is ineffective and adds unneeded costs
 - Common high-performance database deployment
 - Mount database with directio
 - Give maximum memory to database buffer pool

Best practices

- Support for large transfer sizes (32KB) and many outstanding requests
 - Some parts of database data mining need large sequential thruput performance
 - A well-behaved client will right size random I/O requests
- Problems seen historically in OS locking serialization and operation starvation
 - Writers blocking readers in a shared random access file is bad
 - Check with vendor for patches

C

E

N O

DN

UF

S E

R

R

E

N

C

F

S

Best practices

- Mounts should be "hard" or "intr"
 - I really didn't have to say that, did I?
- On some clients using multiple mount points or additional files can increase performance
 - But these seem to be artifacts and bugs waiting to be fixed!

September 22-24

2003 NFS Industry Conference

Page 39 of 47

D

U

Τ

R

Y

N

F

S

C

0

N

F

R

E

N

C

E

S E

Database

September 22-24

2003 NFS Industry Conference

Page 40 of 47

D

U

R

S

0

N

F

R

E

N

C

E

S E

Database tuning

- Match database block size to storage device "block size" multiple
 - 4KB is minimum recommended for Network Appliance storage
 - May be tunable on tablespace basis
- Asynchronous I/O functions in database are platform dependent
- For example, DBWR threads in Oracle
 - Use Oracle tools to determine whether to increase
 - Consider tuning recommendations for multi-CPU hosts

September 22-24

2003 NFS Industry Conference

Page 41 of 47

D

U

R

S

C

N

F

R

E

N

C

S E

- Assuming you can get OS buffering out of the way (directio when available)
 - Tune database buffer space to reduce I/O
 - Add memory in client this can help some database deployments
- And more wonderful database vendor specific tuning

D

U

R

Y

F

S

C

0

N

F

R

E

N

C

E

SE

A bright future

September 22-24

2003 NFS Industry Conference

Page 43 of 47

D

U

S

R

S

C

Ω

N

F

E

R

E

N

C

E

Need for systematic study

- Database over NFS is very compelling
- Impediments to deployment are:
 - Client specific correctness and performance issues
 - Lack of tuning guidelines for customers
 - Lack of "customer support" for NFS deployments
 - Published benchmark data to demonstrate utility
- Easily corrected with cooperative NFS vendor investment

D

UF

S E

R

S

Π

N

R

E

N

C

NFS evolution

- DAFS (derived from NFS) shows that even client performance issues are solvable
 - NFS/RDMA effort in IETF attempting to standardize
- Enhanced protocol semantics for database use are possible

D

U

T

R

Y

SE

N

F

S

C

0

N

F

R

E

N

C

E

Questions?

September 22-24

2003 NFS Industry Conference

Page 46 of 47

0

N

R

E

N

C

E

N

D

U F

S E

R

F

S

Thanks go to

- Darrell Suggs NetApp
- Giovanni Brignolo NetApp
- Glenn Colaco Sun
- Bruce Clarke NetApp