

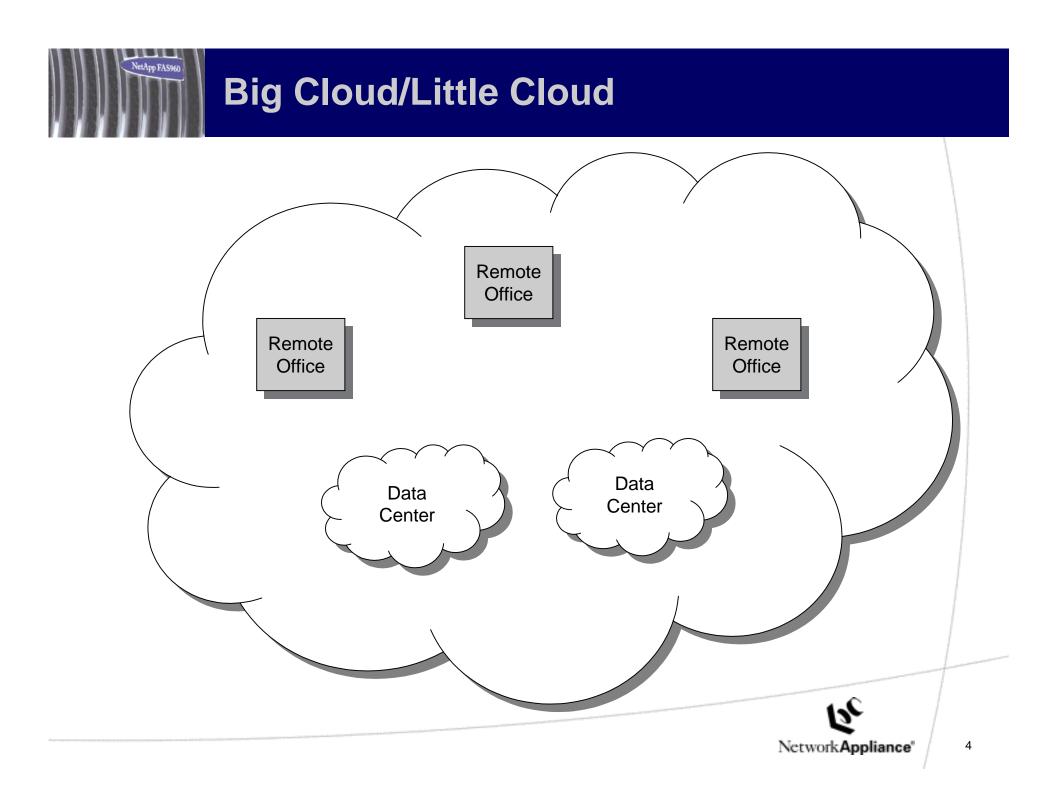
Steven Kleiman

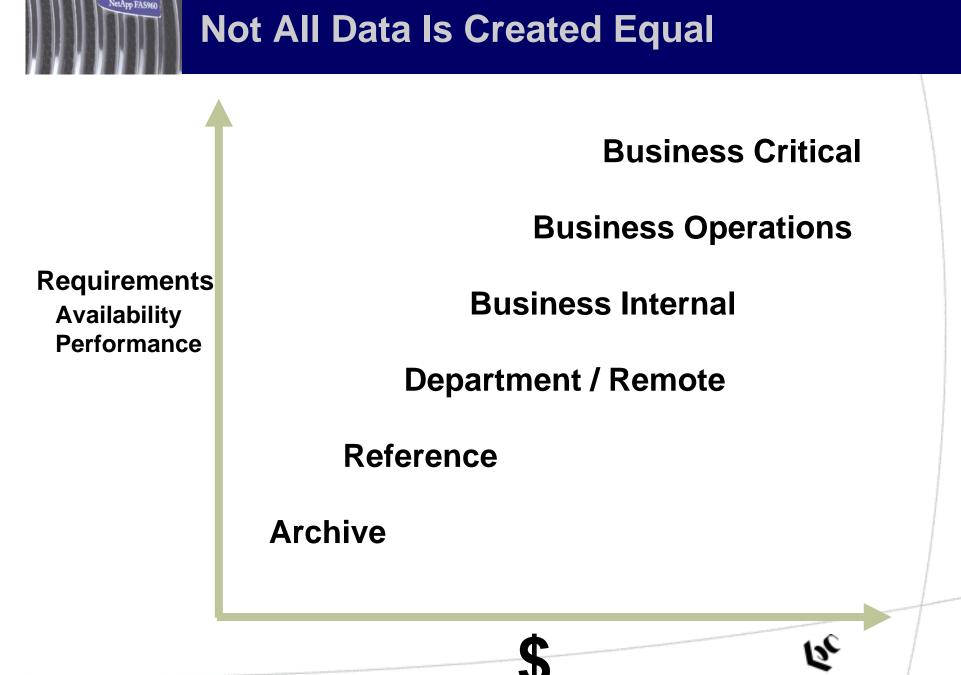
SVP & CTO

Network Appliance, Inc.

1

The Data Management Challenge


Steven Kleiman


SVP & CTO

Network Appliance, Inc.

Data storage problems have evolved

- Petabytes of data
- Several geographically dispersed data centers
- Many remote locations
- Thousands of users and nodes
- Diverse applications
 - Database, collaboration, web, streaming, backup, home directory, simulation, ...
- Different data availability and recovery requirements
- Different types of access
 - Web: HTTP, FTP
 - Streaming: Real, Windows Media, Quicktime, MPEG4
 - File access: NFS, CIFS, DAFS
 - Block access: FCP, iSCSI

Evolution of Enterprise Architectures

- Proprietary Networks
 - Single vendor solutions
- Open Protocol LANs
 - Within workgroups or buildings

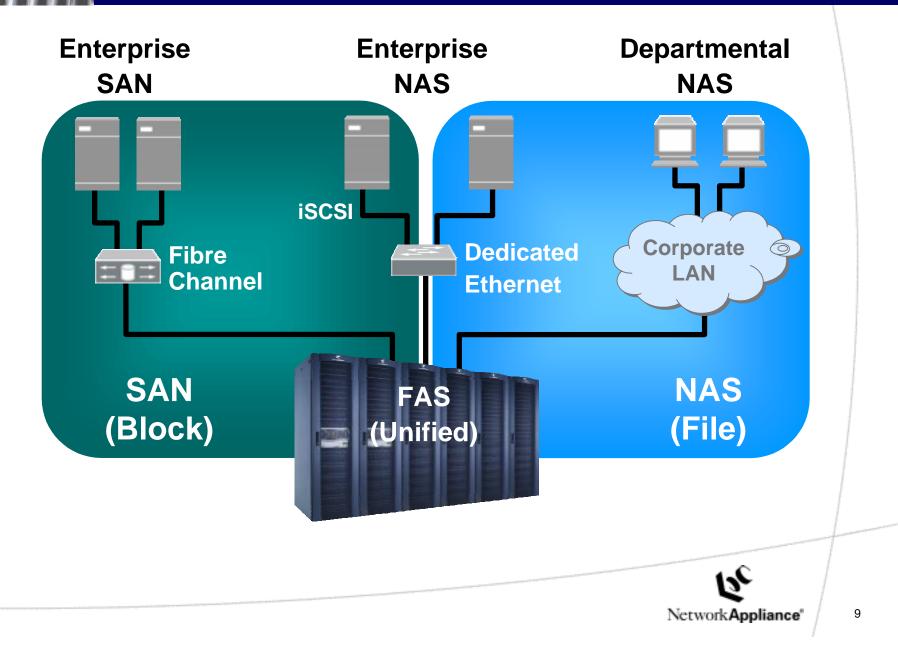
Open Protocol WANs

Connect locations

Enterprise Network Infrastructure

 Enterprise-wide, multi-protocol, network architecture

- Proprietary Storage
 Single vendor solutions
- Open protocol NAS and SAN
 - Within data centers, workgroups or buildings
- Long distance data
 - Disaster recovery
- Enterprise Data Infrastructure
 - Enterprise-wide, multi-protocol, data architecture


Technology has evolved

- Network links are as fast as storage links
 - Started 100:1, now 1:1 (or better)
- Low cost, high volume, reliable disks
 - Raw disk \$/GB can be as cheap as tape
 - Disk is getting cheaper faster
 - High throughput and random access
- High speed, long distance links are getting cheaper
 - MAN technology
- Commodity high performance data center fabrics
- Direct application->storage access
- Volume servers are best price/performance

- The solution is not to have lots of things that are each easy to manage
 - Drag and drop GUIs won't solve it
- Need to eliminate or drastically simplify some existing paradigms
 - SAN/NAS separation, Backup/restore, disaster recovery, data distribution
- Virtualization is important!
 - Unhitch the client model from physical layout
 - Both file and block virtualization are required
 - Beware of trying to hide "1,000 chickens"

Unified Storage

Files vs. Blocks

- Things a block storage device knows:
 - All blocks may have data
 - The geometry of underlying RAID devices
- Things a file storage device knows:
 - The set of blocks that have allocated data
 - The set of blocks that comprise a file
 - The set of blocks that comprise a file system
 - The set of users that have permission to access each block
 - Which application has locks on each block
 - The geometry of underlying RAID devices

Redundant Array of Inexpensive Disks

Redundant Array of Inexpensive Disks

Lower Cost Storage

Volume drives

- Much lower \$/GB
 - Raw disk approaching tape media
- Lower \$/op then enterprise drives
- Slower than enterprise drives, a lot faster than tape
- Less reliable than enterprise drives (?), more reliable than tape

Tape Backup Issues

- Expensive robots
- Tape is a poor recovery mechanism
 - Typical tape drive: ~14-27 hours/Terabyte
- Long latency to restore individual files
- Not accessible or searchable
- Lots of staff to manage
- Not practical for small, remote sites

Simplified Data Recovery Models

Self-recovery, file restore

- User access of Snapshot data
- Recover from inconsistency
 - Fast restore of large data from Snapshots
- Easy Hierarchical Storage
 - SnapVault: long term Snapshot storage on another filer
 - NearStore as backing storage
- File caching ...

- Local data performance at remote sites
 - CIFS/NFS/iSCSI/FCP
- Hierarchical storage
- File server acceleration
- File and block virtualization
- Replace on failure

Security

- Integrated locking & delegations
- Transparent data migration hooks
- However
 - Clients and servers need to exploit these features

Transport

- Overhead <= blocks: RDMA, user I/O</p>
- Sessions
 - Failover, trunking
- Data management
 - Data movement protocols

Reliable grid computing

- Fencing
- Lock break indication
- Rollback locking
- Scalability
 - Parallel files (e.g. pDAFS)
 - Separate control and data transfer (e.g. NASD)

Application I/O

- Traditionally constrained by LCD OS semantics
- Examples
 - Direct application access
 - Bulk I/O
 - Cache control

- Simple directory trees are probably inadequate for petabytes of data
- Indexing
- Stronger transactional semantics
- Query protocols

- Today's data management is too complex
 - Need to change or eliminate some paradigms
- New technology enables new strategies
 - Rethink:
 - Backup/restore techniques
 - Tape
 - Disaster recovery
 - Hierarchical storage
- Focus next generation file access protocols on Big Cloud and Little Cloud issues

