
The Parallel NFS Bugaboo

Andy Adamson
Center For Information Technology Integration

University of Michigan

Bugaboo?

Bugaboo – a source of concern.

 “the old bugaboo of inflation still bothers them”

 [n] an imaginary monster used to frighten children

NFS: “the bugaboo of state will come back to haunt
you”

The Parallel NFS Bugaboo

Statelessness allowed NFS Versions 2 and 3 servers to export
shared storage in parallel

NFSv4 servers don't have it so easy. They have their own
state to manage -- like OPEN --
The protocol does not support distributing it among multiple
servers, making it difficult to export shared storage in parallel
The aggregate bandwidth demands of clustered clients
surpass the bandwidth available with multiple parallel NFS
service
Bandwidth will be limited as long as access through the NFS
protocol requires access to a single server

Outline

pNFS

Won't describe pNFS, see Brent Welch's talk

First implementation: LAYOUTGET operation

 Security issues

Parallel NFS version 4 Servers on Linux

Which state

New file system interfaces?

Other methods

pNFS Prototype
Work done by Dean Hildebrant, CITI

NFSv4 on Linux 2.6.6

Export PVFS2 0.5.1 file system

PVFS2 suited for prototype:
Algorithmic file layout – layout doesn't change if number or
location of disks remain constant

LAYOUTGET can be implemented without recall operations

Simple file system with no meta data locking

Used by tri-labs

Prototype Goals

Verify crucial portion of the pNFS protocol
Proposed LAYOUTGET parameters sufficient

Validate opaque layout design

Look at worst case: LAYOUTGET with each READ
or WRITE
Can direct access storage protocol can address the
NFS 32KB limit?

PVFS2 0.5.1 Overview
Elements:

Clients (up to 10,000s)

I/O storage nodes (up to 100s)

One meta data server

User space with OS-specific kernel module

Algorithmic file layout
Currently supports round robin striping

Simple modular design
No locking protocol, no caching

PVFS2 Architecture

pNFS Architecture

pNFS Prototype Architecture

pNFS Process Flow
1

Open request

2
LAYOUTGET request

4
Close operation

3
Read/Write operations

pNFS
Client

pNFS
ServerI/O

Storage
Nodes

CLOSE

13 Read/Write

2

4

OPEN

LAYOUTGET

pNFS LAYOUTGET Operation

Retrieves file layout information
Typically a set of <device id, data id> pairs, one for
each storage node
Layout: Opaque to the pNFS client
Layout: Understood by the driver module
Valid until file close

LAYOUTGET Request

29.1Average 1MB write

28.9Average 1MB read

2.8Average 32KB write

2.5Average 32KB read

1.26Average LAYOUTGET request

Time (ms)

Experiment – Block Size

Write - 32K Block Size

Write – 2MB Block Size

Read – 32K Block Size

Read – 2MB Block Size

pNFS Prototype: Whats next?
Cache layouts

Implement CB_LAYOUTRETURN

Implement LAYOUTRELEASE

Continue performance testing

pNFS What about Security?
Goal: keep all the strong NFSv4.0 security
properties

ACL and authentication checks remain

Still able to get a GSS context between pNFS
user and pNFSD

pNFSD on the meta data service still does access
checks at OPEN

pNFS Architecture

pNFS: Storage Channel Security
No issues with AUTH_NONE, AUTH_UNIX

RPCSEC GSS: three issues

RPCSEC GSS header checksum on all packets

Mutual authentication: if GSS context is revoked, need to
stop storage access for the user

Data integrity and data privacy enforcement

Each layout type will have a different security story

pNFS working group just beginning to detail the
possible solutions

 OSD Channel Security
OSD capabilities:

Meta data service and storage nodes share keys (setup out
of band)

Keys sign a per object capability

Capability signs each OSD command to storage
similar to RPCSEC GSS header checksum

Associate capability set to a GSS context

If GSS context disappears, capabilities are revoked

Data integrity, privacy: rely on underlying transport,
perhaps IPSEC

Block Storage Channel Security

Relies on SAN-based security: trusts that clients will
only access the blocks they have been directed to
use.

Fencing techniques:
 Heavy weight per client operations – not per user.

 Not expected to be a part of normal pNFS execution path

Need to rely on underlying transport for all security
features (IPSEC)

pNFS Security

Many issues related to security
pNFS working group is moving toward in depth
security discussions

Parallel NFS version 4 Servers on
Linux

Problem: How to share NFSv4 state between NFSv4
servers

Not part of the pNFS protocol

Problem: Exporting NFSv4 on cluster file systems

Problem: Supporting multiple meta data servers on
parallel file systems

Cluster File Systems
“Symmetric Out-Of-Band”

Every node is a fully capable client, data server and meta
data server

Examples: IBM GPFS, Redhat GFS, Polyserve Matrix Server

Parallel File Systems
“Asymmetric Out-Of-Band”

Clients access storage directly, Separate meta data server(s)

Object Based: Lustre, Panasas ActiveScale

Block Based: EMC’s High Road, IBM SAN FS

File Based: PVFS2

NFSv4 Server State Sharing
Methods

Via new server to server protocol

Could conflict with existing meta data sharing architecture

Redirect all OPENS for a file to a single NFSv4 server

Need to track which server is handling OPEN

Large number of clients opening a file is problematic

NFSv4 Server State Sharing
Methods

Via underlying file system

Need additional file system interfaces and functionality

Uses existing file system meta data sharing architecture

Coordinates with local access

Potential NFSv4 Server State to
Share

ClientID

Open owner, Open stateID (Share/deny locks)

Lock Owner, Lock stateID (Byte-range locks)

Delegation stateID and call back info

Simplifying Assumption

Assumption: An NFS client mounts only one server
per parallel or cluster file system at a time

Allows for clientIDs, open owners, and lock owners
to be kept in memory on the single server

File System Queries for Share
Locks

NFSD: Upon each OPEN ask the file system if any
other NFSD has a conflicting share lock

File system will need to add book keeping for deny
access (for Windows clients)

NFSD: OPEN stateID can be created and used as
usual.

File System Queries for Byte-Range
Locks

NFSD: Upon each LOCK/UNLOCK ask the file
system to manage the locks.

There is an effort underway led by Sridhar
Samudrala (sri@us.ibm.com) to expand the existing
file_operations lock call to include enable NFS
locking over clustered file systems.

Useful for both LOCKD and NFSv4 server

LOCK stateID can be created and used as usual

File System Queries for Delegation
Support

Hand out a delegation
count readers/writers

check if in recall state

Recall a delegation

register a recall callback

receive a recall request

Linux file_lock FL_LEASE has this functionality

Discussion

◆ The combination of pNFS and parallel NFSv4
server state sharing can solve the 'parallel NFS
bugaboo'

◆ pNFS effort is well underway
◆ Parallel NFSv4 server state sharing is left as a per

OS solution
◆ CITI will prototype file system extensions to enable

parallel NFSv4 server state sharing on Linux

Any Questions?

http://www.citi.umich.edu/projects

