

NAS and Clustering

Ashutosh Tripathi

Sun Microsystems

ashutosh.tripathi@sun.com

HA NAS Server

- NAS Server is a key infrastructure in the data center
- Typical deployments with Clustering
 - Home directory, Mail server
 - Software repository for key apps
 - SAP
 - Middleware

Why Clustering?

- Reduced downtime
 - Protect from HW failures
 - Server crash
 - Network (NIC, cable, switch/port)
 - Storage (HBA, cable, controller port)
 - SW failures
 - OS crash/hangs
- Manageability
 - Reduce planned downtime
 - Patching, upgrading
 - Load balancing 2004 NAS Industry Conference

SunCluster Configuration

October 12-14, 2004

2004 NAS Industry Conference

Page 4 of

How fast is the recovery?

- Recovery from server crash
 - Heartbeat loss detection ~ 10 sec
 - Quorum ~ 9 sec (SCSI-II)
 - SCSI-III and Fiber Channel are much faster
 - Storage Fencing ~ 10 seconds
 - Volume manager failover ~ 2 seconds
 - Mirror recovery, if needed, happens in background
 - Filesystem recovery (fsck), highly variable
 - Use of a logging filesystem is necessary

How fast....

- NFS (v3) recovery
 - Sharing the filesystem and restarting the daemons
 ~ 1 sec
- Total ~ 32 seconds + FS Recovery
 - NFS client side retries can delay client side recovery further
 - Clients doing locking would experience an additional grace period delay (45 seconds default with NFSv3 on Solaris)
- Other recovery scenarios (e.g. Smooth switchover) can be faster as no heartbeat timeout or Quorum_{Page 6 of}

2004 NAS Industry Conference

NAS & Clustering

Integration notes

Multi-host issues

Clustering environments are multihosted

- NAS server identity (IPaddress etc.) needs to failover

- Firewalls

- Clients connect to the failover hostnames, they expect all communication to originate from that hostname
- Tricky to do with UDP
- With NFSv3 multiple TCP ports doesn't help much
- Server calling back to clients is another scenario
- Will be better in NFSv4, single TCP port

NAS & Clustering

Kerberos Integration

- Kerberos has separate notions of host and service
 - Host principals vs service principals
- The host part is an issue in Clustered environments
 - Service principal nfs/hostname.domain
 - NAS server implementations (as well as GSS implementations) need to manage the *hostname* part carefully
 - Use the TCP peername instead of simply using the hostname of the server machine Page 8 of
 2004 NAS Industry Conference

Using NAS storage in a Cluster

- Cluster is a NAS client
- Applications on the Cluster failover from node to node
- At the time of a node crash, application may have pending I/O, and/or locks

Using NAS...

- SunCluster needs to provide fencing guarantees
 - No well defined way to do this (yet) in NFS protocol
 - One-of solutions are being worked on
 - Clearing locks held by dead nodes is another related issue
 - Need to define this within the NFS protocol itself
 - Security is an issue
 - Leave the client health detection to outside the protocol (Clustering or manual)

2004 NAS Industry Conference

Page 10 of

Future investigationScalable NFS

- SunCluster has built-in load balancing
- SunCluster has distributed filesystem support
 - Proxy Filesystem (a.k.a. Global Filesystem)
 - SAM-QFS
- SunCluster has built-in heartbeat based membership detection
- Sharing the same filesystem from all cluster nodes is an easy way to achieve scalability
- How does this compare with pNFS?
- NFSv4 is very stateful, how to manage this state on different Cluster nodes?

Summary

- NAS server is a key infrastructure in the data center
- Clustering is a viable approach for protecting this infrastructure
- Scope for better integration between NAS and Clustering