

Distributed Hierarchical Storage Management (DHSM)

John Hayden – EMC Engineering

Agenda

- Customer Challenge
- Distributed HSM
- Influences & Design Goals
- DHSM leveraging the DHSM API

Customer Challenge

- File System growth is rapid storage requirements compounded
 - The value of information changes over time
 - Storage resources vary in performance, cost, manageability and levels of data protection
 - Not all files should be sitting on primary storage

Customer Challenge

- Managing the movement of files to more cost effective storage such as ATA based storage
 - Manual process can be time consuming
 - Data location transparency should be kept
 - Manage cost of backup and make it feasible

File-Based HSM or "Distributed HSM"

- Gartner
 - Distributed HSM is file-based archiving not database data, not e-mail data, and not mainframe HSM
- EMC
 - Distributed
 - File migration and management
 - Policy-based
 - Open

Guiding Design Principles of DHSM

- Maintain the NAS head as the customerfacing device
- Leverage existing features and core competencies
- Open architecture that allows us to partner to leverage expertise

- Encourage 3rd party integration

• Provide a scalable and robust architecture

Existing NAS HSM Implementations

- Not completely transparent
 - Relies on shortcuts and symlinks
 - Clients must access both primary and secondary storage to access migrated data
- No automatic, user-driven mechanism for data to be recalled back to the primary storage in real time
- Single-protocol environments only

Existing DHSM – Architectural Overview

What can we leverage?

- Proven components in the Celerra Data Migration Service (CDMS) functionality
 - NFS and CIFS clients built in
 - Offline inodes
 - Connection database

What was missing?

- An offline inode API to the DART
- Policy and data migration engines that understand the Celerra offline inode API

Celerra DHSM

- Policy engine data migration
 - Periodically copies primary files to secondary store.
 - Overwrites primary files with CDMS style offline files.

Celerra DHSM

- Transparent data recall
 - May or may not migrate back based on configuration
 - Data access to secondary store is handled internally
 - Policy Engine not involved here
- Eases backup/storage costs
 - Decreased frequency of backups on secondary
 - Lower secondary storage costs

DHSM – Architectural Overview

DHSM API

- XML over HTTP
- Two particular calls
 - DHSM_SET_OFFLINE_ATTRS set a file offline or modify its attributes
 - DHSM_GET_ATTRS query a file's attributes, including offline status.

Offline Files

- All attributes and metadata reside on primary store
- Offline Inode
 - Opaque Data
 - Absolute pathname
 - Migration Method
 - Verifier
- Validation
 - Validates that secondary file is in sync with primary offline file
 - Modification time/file length validation
 - Occurs prior to offline I/O.

Software Partner Status

 DHSM API Development Kit available since November 2003

Actively seeking additional API partners

DHSM – Benefits

- Data value is aligned with storage
- Can use almost any type of secondary storage
- Avoids HSM massive unintentional recall
- Transparent
 - Migrated files look the same as online files
 - Clients only access the primary storage on Celerra
- Automatic, user-driven data recall to primary storage in real time (if desired)
- Multi-protocol solution
- Multi-tier hierarchy
- Virtually unlimited file system for the Celerra

Handling Backup

- NDMP and CIFS-based backups automatically back up offline inodes on Celerra
 - Option to backup content through the Celerra as well if desired (NDMP option, CIFS Backup Operator Group integration)
 - Allow offline backups and offline restores
- Significant reduction in primary backup window
 - Secondary storage can be backed up less frequently

CIFS Specific Enhancements

- CIFS Offline Attribute
 - Generated by DART CIFS server if file is offline
 - CIFS clients know if a file is online/offline
 - Increase timeout of the client

hello_world... hello_world2.d oc

- CIFS Offline Notification
 - Popup sent to CIFS client to warn the "human" user
 - Timeout is a parameter
 - Customizable message

Celerra Distributed HSM Summary

- Enabling technology for building an Information Lifecycle Management solution with the Celerra
 - Policy-driven
 - Distributed
 - Open
 - Migration and management at the file level
 - Data location transparency
 - Cost and feasibility of backup

Questions?

