

Deploying Secure NFS

Nicolas Williams

Staff Engineer

Sun Microsystems, Inc.

nicolas.williams@sun.com

Secure NFS Background

A Brief History – Protocol

- In the beginning, no security
 - AUTH_SYS, AUTH_NONE (1984)
- First attempts at security
 - AUTH_DH (1987)
 - AUTH_KERB (1992)
- RPCSEC_GSS (1997)
 - Generic, "pluggable," extensible

Secure NFS Background

A Brief History – Implementations

- SunOS 4.x, AUTH_DH (1987)
- Solaris 2.6, SEAM (2000)
 - RPCSEC_GSS, Kerberos V available as Sun Enterprise Authentication Mechanism
- Since then Solaris supporthas improved; Linux, Hummingbird, NetApp, and others have added support for RPCSEC_GSS

Page 3 of

High-Level View

- Step one: key distribution
 - Plan, deploy Kerberos V Realm(s) KDCs
 - Host keying
 - NFS, other services, clients*
 - User keying (password migration)
- Step two: secure the actual shares
 - share -o sec=sys → share -o sec=krb5i

Deploying Kerberos V

Planning Realms

- Plan krb5 realms along boundaries of current administrative domains
 - One IT dept. → one realm
- Name realms after DNS domains
 - No need for a realm for each sub-domain
 - Kerberos V has not be internationalized
 - So only ASCII-only realm names work for now!

Deploying Kerberos V

KDC Infrastructure

- Plan number of KDCs, topology, replication
 - One or two KDCs per-supported site
 - No need for big iron for KDCs
- Physical security
 - Kerberos V KDCs are trusted third parties that share secret keys w/ all principals
 - KDC theft is a Bad Thing

Deploying Kerberos V

Key Distribution

- Key your services
 - nfs/<hostname.fqdn>@<realm>
 - host/<hostname.fqdn>@<realm>
 - Where necessary*, key your clients
 - host/..., root/...*
- Give users Kerberos V principals and passwords
 - <username>@<realm>

Securing NFS Shares

NFS Security "Flavors"

- AUTH_* (NONE, SYS, DH)
- RPCSEC_GSS
 - GSS-API mechanism, protection level, QoP
 - krb5 → Kerberos V, authentication only
 - krb5i → Kerberos V, integrity protection
 - krb5p → Kerberos V, privacy protection
 - dh → MECH_DH, authentication only
 - SPKM, LIPKEY

Securing NFS Shares

Throwing the Switch

- Server must be keyed
- Relevant users must be keyed
 - Sometimes clients must be keyed also
- Flip switch per-share
 - Multiple sec flavors OK, but make no sense
 - sec=krb5i:sys → as insecure as sec=sys
 - sec=sys: $krb5 \rightarrow fine for testing$
 - Minduthed server's defaults!

General Notes

Careful with that Ax Eugene

- Compatibility
- Principal → user mapping
- Credential management
- "Enctypes"
- NFS sec flavor negotiation
- Upkeep

Compatibility Notes

Not Too Bad

- NFS interoperability is really good
- But, several different KDC admin protocols, tools don't help
 - "ktadd" not very interoperable yet
 - Workaround: create 'keytabs' on compatible client, copy to incompatible target
 - Several different Kerberos V password-changing protocols
 - Most support one particular such protocol

Principal Mapping

A Server-Side Issue

- Windows 2000 and up uses Kerberos V principals as usernames
 - But mapping may still be needed for principals from non-Windows realms
- Where this is not so (e.g., Solaris, Linux), principal→user mappings are needed

Principal Mapping

- Linux, Solaris, use gsscred table and/or krb5.conf mappings
- NetApp maps user principals in server's default realm to files, NIS, or LDAP users, as per config
 - root principals mapped to uid 0 per-root exportfs option
- Check your server's docs

Credential Management

Yes, Network Credentials Should Expire

- Credentials represent users, clients, services
 - Kerberos V lacks revocation facility, relies on short ticket lifetimes
 - Stolen creds → impersonation
 - Disabling principals
- So creds should have short, finite lifetimes

Credential Management

Dealing w/ Ticket Expiration

- Platform support can help
 - Auto-renew Kerberos V tickets
 - Auto-re-delegation of tickets
 - Auto-refresh Kerberos V tickets
 - At screen unlock time, say, or on-demand if passwords are cached
- Medium-lived TGTs (say, 7 days), short-lived service tickets (say, 30 min.)

Page 15 of

"Enctypes"

Get this Right

- Make sure that your host service principals have keys for only the enctypes they support
- Make sure that your user principals have keys for the strongest enctypes supported by the hosts they log into with passwords

Secure NFS Negotiation

More on Throwing the Switch

- Multi-user timesharing clients typically mount with one NFS security "flavour," thus the need for per-share/mount flag days
 - Specify one on mount or let one be negotiated
 - Whichever you get applies to all users on client
 - Details of negotiation may be implementation specific (see later slide on Solaris 10)
 - Be aware of how your clients negotiate NFS sec flavours, if not specifying one on the client-side

2004 NAS Industry Conference

And After Deployment?

Upkeep

- Key new hosts/services, users
- Revoke old ones
- Install decent password quality policies
 - Even before deploying!
- Mind your KDCs!

Secure NFS Client Availability by Platform

- Linux 2.6, check your distro
 - Fedora core 2
- FreeBSD 5.2, OpenDarwin
- AIX 5.3
- Solaris 2.6 and up
- Windows 2000 and up
 - Hummingbird NFS Maestro 8.0 and up

Secure NFS Server Availability by Platform

- Linux 2.6, check your distro
 - Fedora core 2
- AIX 5.3
- Solaris 2.6 and up
- Windows 2000 and up
 - Hummingbird NFS Maestro 8.0 and up
- NetApp ONTAP 6.2

Kerberos V KDC Availability by Platform

- Windows 2000 and up
 - ActiveDirectory
- Cybersafe
 - Runs on Windows, Solaris AIX, HP/UX
- AIX 5.1 and up
- Solaris 2.6 and up
- cont.

Kerberos V KDC Availability by Platform

- Linux distros, *BSDs, open source
 - MIT krb5
 - Heimdal
 - Shishi (GNU)

NFSv4 Availability by Platform

- Linux 2.6, check distros
 - Fedora core 2 and up
- Windows 2000 and up
 - Hummingbird NFS Maestro 8.0 and up
- Solaris 10
- AIX 5.3
- FreeBSD 5.2 and up

Secure NFS, Kerberos, on Solaris

- Availability by release
- What's new in Solaris 10
- Client keying requirements in Solaris 10
- Deployment tips and tools
- NFS sec flavor negotiation

Availability by Solaris Release

- NFSv3
 - Solaris 2.5.1
- RPCSEC_GSS, GSS-API, Kerberos V mechanism
 - Unbundled in 2.6, bundled in Solaris 8
- NFSv4
 - Solaris 10

Availability by Solaris Release

- Utilities, KDC
 - Unbundled in 2.6, bundled in in Solaris 9
- Kerberized telnet, r-cmds, FTP
 - Unbundled in 2.6, bundled in Solaris 10
- Secure Shell w/ GSS-API support
 - Solaris 10

What's New in Solaris 10

With Respect to Kerberos V Support

- Kerberos V improvements
 - New crypto: 3DES, RC4, AES
 - Solaris Cryptographic Framework
 - Resync'ed with MIT krb5 1.2.1 + much of 1.3
 - KDC exchanges over TCP, IPv6 support, much more
 - Better deployment tools

What's New in Solaris 10

With Respect to NFS Support

- Relaxed host keying reqs for clients
 - No need for "root" principals (except for share -o root=<list> uses)
 - No need for "host" principals on single-user clients; host/<random> also OK for road warriors
- Improved principal to user mapping
- NFSv4
- Secure NFS Clustering

Solaris KDCs

Planning KDC Infrastructures

- One master, multiple slaves
 - One or two per-supported site
 - Big iron is **not** needed for KDCs
 - Use Incremental Propagation (iprop) for fast synchronization with master KDC
 - Incremental Propagation is new in Solaris 10

Deployment Tools: kclient

Configuring and Keying Servers, Clients

- kclient(1M)
 - More functional than sysidkrb5(1M)
 - Set up krb5.conf(4) from profiles
 - Keys clients, servers with kadmin(1M)

PAM Configuration

Configuring PAM to Use Kerberos V

- Read docs:)
 - pam.conf(4), pam_krb5(5), pam_krb5_migrate(5), AnswerBook
- Design a PAM config for relevant services
 - pam_krb5 required? sufficient? binding? See examples in pam_krb5(5)
- Deploy pam.conf changes

Deployment w/ Solaris

User Password Migration

- Enable automatic user migration in master KDC's kadm5.acl(4)
- Enable automatic user migration in clients' pam.conf(4) by adding pam_krb5_migrate(5)
- Watch users automatically get Kerberos V principals
 - Use kadmin policies to force password aging Page 32 of

*Notes on Client Keying

It's Easier Now

- Time sharing clients should have "host" principals
 - For user authentication
 - For some per-NFSv4 mount state (clientid)
 - Single-user (home, laptop) systems can do w/o
- "root" principals
 - Required pre-Solaris 10
 - Now required only for root-equivalent access

Page 33 of

Secure NFS Negotiation

Things Worth Knowing

- When mounting w/o sec option, client picks 1st from server offering for which credentials are available
 - [Solaris 10] for the user that triggered the mount
 - [per-Solaris 10] for the client's root principal
- One sec flavor per-mount
 - All users on client are affected; relevant users must have credentials, else they get EACCES

Secure NFS Negotiation

A Word About Solaris' nfssec.conf(4)

- nfssec.conf(4) 'default' entry provides default sec flavor for share commands
 - And for WebNFS (v3) mounts
- NFSv3 clients negotiate only sec flavors listed in nfssec.conf
- NFSv4 clients ignore nfssec.conf(4)

What About MECH_DH

SecNFS w/ the Sun DH GSS Mech

- Really, don't use DH
 - This slide is here for completeness, and to show similarity with Kerberos V deployment
- Step one: key distribution
 - Deploy LDAP directory
 - Key all hosts and users
- Step two: secure the actual shares
 - share -o sec=sys → share -o sec=dh

Page 36 of

What About MECH_DH

Deploying w/ AUTH_DH/MECH_DH

AUTH/MECH_DH issues

- Authentication only, no transport protection
- Tiny keys for NIS, files backends
- Larger keys only for NIS+ (EOLed), LDAP
- Deployment story is similar to Kerberos V
 - But more difficult in some ways
- Limited support only* Sun implements it
- Use Kerberos V instead

Page 38 of