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So what makes a protocol interesting ?

 Let’s look at HTTP/HTML
 300 Multiple Choices
 301 Moved permanently
 302 Moved temporarily
 <A HREF=“foo.com/bar.html”>foo</A>

 The ability to have clients simply and transparently 
redirect between networks of servers
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So let’s go change the world

Welcome NFS V4



So what should we get with NFS V4 leveraging 
such capabilities

 For the user/client
 A unified enterprise wide namespace
 Data always available with the desired performance
 No broken links, missing data
 Ability to work even in the presence of network partitions

 For the administrator
 The ability to easily install and configure such a system, including existing NFS 

servers 
 The ability to manage such a federated system as a single system
 The ability to add and remove servers/storage without disrupting clients
 Automation to optimize system utilization to achieve high level business goals



 Project Glamour 

 A world where data replicates, is cached and 
migrates intelligently across networks of file 
servers, seamlessly, automatically and  securely

 Enterprise-wide federation of islands of data

 Enables replication, migration and caching of 
data across geographically distributed physical 
file systems 

 Implemented as ‘middleware’ for storage
 Utilizing existing storage, filing systems and 

client access protocols



Given existing NFS V4 servers how should such a 
system be structured

 Change as little as possible
 Do not modify the underlying block storage or filing systems
 Make no extensions to the NFS clients
 Make the smallest modifications to existing NFS servers possible

 Reuse as much as possible
 Reuse existing Kerberos and RPCGSS infrastructure
 Reuse existing protocol where possible

 Implement as Middleware for Storage
 Layer new functions into existing stacks
 Provide new functionality in simple user space daemons



Glamour’s Data Management 
Architecture

 Federation of NFS V4 servers
 Centrally administered
 Server to server movement of datasets

 Centralized administration
 Can be externally administered as SMI-S 

style objects

 Persistent namespace and replication, 
migration and cache information
 Optionally imported from a global 

namespace

 Delegation of responsibility
 Designed to work with unplanned network 

partitions
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Unit of Data Management
 Glamour provides fine grained data management

 Existing frameworks work at LUN or FS level
 Allocate a LUN, migrate a file system

 Glamour works at the dataset level
 Dataset is the basic unit of data administration 
 A directory or directory tree
 May be a portion of a mounted filesystem instance

 More flexible management
 Replicate a directory
 Migrate a directory tree
 Cache a directory tree
 Better load balancing



Glamour Namespace
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 Datasets mounted on datasets
 Links placed in datasets
 Similar to symlinks

 Root namespace a replicated dataset
 Replicated from federation admin server on 

modification

Almaden



Replication
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 Read-only replication across  sites 
 Read-write support via clustered filesystems (e.g., 

GPFS)
 Policy-based consistency 

 e.g., hourly snapshots 
 Replica attached in global namespace

 In arbitrary configurations
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Migration
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 Transparent movement of data
 Data movement appears instantaneous to users

 Guaranteed data integrity  
 Even in the face of network partitions

 Transparent to namespace
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Caching
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 Persistent caching
 Partially populated datasets on remote servers

 Policy driven consistency guarantees
 Consistent, consistent within time etc
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Data Movement

 Don’t re-invent the wheel
 Provides hooks to use existing transfer mechanisms

 System level copy commands
 Cluster file systems
 Block based copy services
 Sneaker-net

 Unless you can invent a better wheel
 In-band transfer mechanisms

 RPCGSS based copy
 Advanced compression algorithms

 Optimized for redundant block elimination
 Regardless of namespace
 Minimizing MIPS required



Client Steering

 A client connects to a random server
 Starts to walk the namespace
 Starts to cross dataset boundaries

 Servers detect
 Client network location
 Servers with available data
 Servers with free bandwidth

 Client is sent subset of available locations
 Builds upon previous workload balancing and prediction algorithms
 Avoiding centralized single point of failure



Automated Data Placement

 Move the data to the client
 As opposed to direct the client to the data

 System monitors workload and access patterns
 Defines servers closer to clusters of clients 
 Monitors server workload and spare capacity
 Based on high level policies will

 Replicate on demand
 Migrate on demand
 Cache on demand

 Based on distributed algorithms
 No single point of failure



Status 

 We currently have a working systems
 fs_locations enabled AIX and Linux clients
 A functioning federation administration server and management tools
 Functioning AIX and Linux NFS server

 What we have demonstrated
 A functioning namespace
 Creation of datasets
 Replication of datasets
 High efficiency data movement protocols
 Basic client steering

 Ongoing work
 Advanced client steering and automated workload balancing
 Migration and caching



What we will have achieved ?

 A storage System than
 Is virtualized
 Scales
 Is secure
 Is optimized and self-optimizing
 Is self-managing
 That only requires a NFS V4 infrastructure

 No additional requirements beyond NFS V4 



The future for storage

 NFS servers can be cheap and small (in addition to being large and expensive)
 The ‘cost’ of the NFS functionality over an object store is negligible
 The cost of an NFS server over a SAN based RAID controllers and adapters is small and 

diminishes with Moores Law
 Consider the IBM ESS hardware also happens to be one of the worlds fastest NFS servers

 What will be the difference in $/user IOP ?

 A federation of NFS servers can utilize existing commodity hardware and network 
infrastructure
 Bandwidth is never free but this is about the most economical way to get it

 A federation of NFS servers can be flexible and provide high performance
 Particularly when coupled to RDMA and pNFS

 Will be reliable and robust
 Based on existing well understood security paradigms
 Limits the ‘trust’ requirement placed on block access devices



The future for NFS

 NFS V4.0 Specification
 Adequate but not ideal

 Referral techniques need better documentation for consistency of implementations
 Capabilities are limited

 Controlling client steering
 Describing consistency of file handles and state information
 Ability to evolve filehandles on data movement

 Incremental updates can and will improve 
 Server side protocols

 Significant value in defining open server and administration protocols 
 Always envisaged as an offshoot from V4
 Time to re-energize this effort


