

NFS/RDMA Implementation

Tom Talpey

Technical Director

Network Appliance, Inc.

tmt@netapp.com

Outline

- Overview/standards
- Linux implementation
- Development efforts

What is NFS/RDMA

- NFS/RDMA is:
 - An RPC-layer protocol that allows NFS to use RDMA networks (such as Infiniband and iWARP)
 - A transparent solution for applications, NFS protocol features, and NFS users
 - A significant performance boost to clients
 - Reduces client CPU overhead
 - Utilizes high-bandwidth, low-latency fabrics
 - A single-wire host cluster solution

Background

- Protocol is IETF NFS WG task
- Originally published in 2003
- Two specifications:
 - RPC/RDMA:
 - Defines RDMA transport
 - Specifies binding of any RPC protocol
 - NFS Direct:
 - Defines NFS v2, v3, v4 aspects
- See:
 - http://www.ietf.org/html.charters/nfsv4-charter.html

Implementations

- All on NFSv3
- Linux client
 - Infiniband and iWARP
- Linux server
 - (under development)
 - Infiniband and iWARP
- Network Appliance Server
 - Infiniband (prototype)
- Solaris 10 client and server
 - Infiniband

Dependencies

- RDMA fabric(s)
 - Infiniband
 - iWARP
- RDMA support in host
 - OpenIB, kDAPL, etc.
- RPC/RDMA support in host
- Infrastructure
 - Server(s)
 - Fabric management, naming, admin, etc

RDMA Fabrics

- Infiniband
 - Significant presence in the recent market
 - Inexpensive, low-latency cluster "spine"
 - High adoption rate in HPC
- iWARP (TCP/IP RDMA)
 - Emerging presence in the market
 - Largely gated by 10GbE availability
 - Numerous vendors preparing products

Infrastructure

Infiniband

- Working in OpenIB and some Linux distros
- Requires IB network, switches, subnet manager, etc.
- A good deal of setup, but readily do-able

iWARP

- Working in vendor-provided packages
- Working on OpenIB (as of 10/16!)
- Reuses existing TCP/IP services/setup

RDMA Framework

- Linux RDMA APIs
- OpenIB
 - Open-source Linux IB framework
 - Committed to 2.6.11+
 - Being extended to support iWARP
- Verbs
 - Low-level RDMA API
 - Kernel and user versions
- kDAPL
 - Historical RDMA portable API
 - Being phased out for Linux

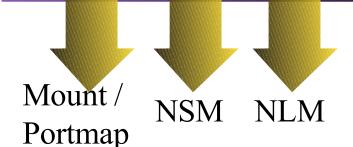
RPC/RDMA Support

Linux

- Prototype (working!) client implementation since 2004
- Server implementation under development
- Currently developing on kDAPL
 - Works on Infiniband and iWARP
- Plan to move to OpenIB verbs when iWARP is also supported

Solaris

Solaris 10 supports client and server


NFSv3/RDMA Client stack

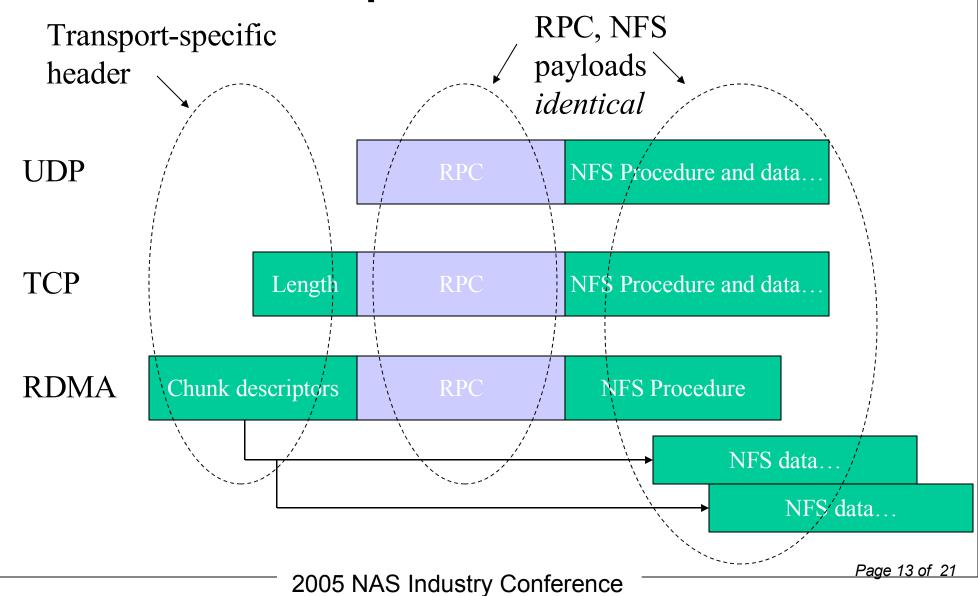
NFS Client Filesystem

RPC Transport switch

RPC/TCP/UDP

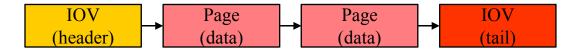
RPC/RDMA

<u>Page 11 of 21</u>



Linux RPC Transport Switch

- Abstraction for multiple transports
 - IPv4 UDP/TCP
 - IPv6 UDP/TCP
 - RDMA, etc
- Extensible, configurable framework
 - Dynamically loadable, mount-driven
- Destined for mainline kernel
 - Implemented as patchset for many Linux versions
 - http://troy.citi.umich.edu/~cel/linux-2.6/2.6.13/release-notes.html


Transport RPC format

RPC/RDMA Transport

- Implemented transparently to NFS!
 - < 4K Lines Of Code
- Linux passes "iov" list down to xprt

- RPC/RDMA module translates iov's to chunks
 - RPC headers (first iovec) sent as inline
 - Data sent/received as RDMA chunk (0-copy 0-touch), or optionally copied inline
- Manages connections, etc

Linux Client status

- Fully functional client working on
 - 2.4.x
 - 2.6.x
 - Transparent VFS with caching
 - Also supports uncached zero-copy, zero-touch with O_DIRECT
- Implemented as RPC Transport
- Release is planned when Server and RPC Transport switch are available

Linux Server status

- Under development at UMich/CITI
 - Sponsored by NetApp and SGI
- Currently in "Phase 2", basic connection and RPC exchange
 - Working on IB and iWARP
 - Just 2K Lines of Code!
- Phase 3 (functional completion) by end of year, with full RDMA Read and Write transfers
- Planned demo at Supercomputing 2005 in November (Seattle)

Linux Server Implementation

- Does not use a switch abstraction
 - Server must listen on all transports
 - Each request processed per-endpoint
- Does use iovec approach
 - Similar to client, decodes/encodes from/to RPC buffers
 - Minimal upper-layer changes
- Some transport ramifications
 - E.g. requires export IP address checking
 - OpenIB Infiniband API does not provide all these (yet – kDAPL does)

<u>Page 17 of 21</u>

Other Linux Server stuff

- Multiple "credits" support is under development
 - No real performance numbers until this
- Currently developing on Ammasso iWARP hardware
 - Using Ammasso kDAPL
- Working status on OpenIB kDAPL
 - No major issues, but disruptive to our work
- Moving later to OpenIB native verbs

Opportunities

- Clusters!
 - High Performance Computing
 - Scientific computing
 - Financial apps
 - Databases

- NFS/RDMA provides a one-wire storage service
 - With full transparency and sharing
 - And very high performance

Summary

- The framework is (finally) coming into place to enable NFS/RDMA
- There are proven benefits
 - Performance, sharing, etc
- There is huge interest in Storage Services over cluster fabrics
- Linux will enable the adoption

Questions?

tmt@netapp.com

- http://www.ietf.org/html.charters/nfsv4-charter.html
- http://www.citi.umich.edu/projects/rdma
- http://troy.citi.umich.edu/~cel/linux-2.6/2.6.13/releasenotes.html
- Or, soon to a Linux kernel near you!