

Mirror File System

A Multiple Server File System

John Wong
CTO

Twin Peaks Software Inc.

John.Wong@TwinPeakSoft.com

Multiple Server File System

- Conventional File System -- UFS, EXT3 and NFS
 - Manage and store files on a single server and its storage devices

- Multiple Server File system
 - Manage and store files on multiple servers and their storage devices

Problems

- Single resource is vulnerable
- Redundancy provides a safety net

Disk level => RAID

Storage level => Storage Replication

- TCP/IP level => SNDR

File System level => CFS, MFS

System level => Clustering systems

Why MFS?

- Better Disaster Recovery
- Better RAS
- Better Scalability
- Better Performance
- Better Resources Utilization

NAS Industry Conference

Unix File System

User Space

Kernel Space

Page 5 of

TWIN PEAKSOFTWAREING

NFS (Client

mount)

NFSD

Data

NAS Industry Conference UFS | NFS Application Application Application **UFS** NFS (Client **UFS NFSD** mount) Data B Data B Page 7 of 2005 NAS Industry Conference

UFS + NFS

- UFS manages data on the local server's storage devices
- NFS manages data on remote server's storage devices
- Combine these two file systems to manage data on both local and remote servers storage devices

MFS = UFS + NFS

Active MFS Server

Passive MFS Server

Page 9 of

TWIN PEAKS OF TWARE INC.

Building Block Approach

- MFS is a kernel loadable module
- MFS is loaded on top of UFS and NFS
- Standard VFS interface
- No change to UFS and NFS

File System Framework

MFS Framework

_____ 2005 NAS

2005 NAS Industry Conference

Transparency

- Transparent to users and applications
 - No re-compilation or re-link needed
- Transparent to existing file structures
 - Same pathname access
- Transparent to underlying file systems
 - UFS, NFS

Mount Mechanism

- Conventional Mount
 - One directory, one file system
- MFS Mount
 - One directory, two or more file systems

Mount Mechanism

mount –F mfs host:/ndir1/ndir2 /udir1/udir2

- First mount the NFS on a UFS directory
- Then mount the MFS on top of UFS and NFS
- Existing UFS tree structure /udir1/udir2 becomes a local copy of MFS
- Newly mounted host:/ndir1/ndir2 becomes a remote copy of MFS
- Same mount options as NFS except new '-o nolock' option and no '-o hard' option

TWIN PEAKSOFTWARE INC.

READ/WRITE Vnode Operation

- All VFS/vnode operations received by MFS
- READ related operation: read, getattr,....
 those operation only need to go to local copy (UFS).
- WRITE related operation: write, setattr,.....
 those operations go to both local (UFS) and remote (NFS) copy simultaneously (using threads)

Mirroring Granularity

- Directory Level
 - Mirror any UFS directory instead of entire UFS file system
 - Directory A mirrored to Server A
 - Directory B mirrored to Server B
- Block Level Update
 - Only changed block is mirrored

MFS mfsck Command

- # /usr/lib/fs/mfs/mfsck mfs_dir
 - After MFS mount succeeds, the local copy may not be identical to the remote copy.
 - Use mfsck (the MFS fsck) to synchronize them.
 - The mfs_dir can be any directory under MFS mount point.
 - Multiple mfsck commands can be invoked at the same time.

MFS msync Command

/usr/lib/fs/mfs/msync mfs_root_dir

- A daemon that synchronizes MFS pair after a remote MFS partner fails.
- Upon a write failure, MFS:
 - Logs name of file to which the write operation failed
 - Starts a heartbeat thread to verify the remote MFS server is back online
- Once the remote MFS server is back online, msync uses the log to sync missing files to remote server.

Active/Active Configuration

MFS Locking Mechanism

MFS uses UFS, NFS file record lock.

Locking is required for the active-active configuration.

Locking enables write-related vnode operations as atomic operations.

Locking is enabled by default.

Locking is not necessary in active-passive configuration.

Summary

- Multiple locations of real-time, active data
- Full utilization of hardware/software investment
 - no expensive "spare tires"
- An efficient DR solution
 - no cumbersome recovery procedures
- Greatly reduced network traffic
 - go to your nearest server
- Scalable, pay as you grow
- Easy to deploy and manage

NAS Industry Conference MFS Application (Application) (Application) (Application) **MFS MFS** Page 23 of 2005 NAS Industry Conference