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Multiple Server File System

• Conventional File System -- UFS, EXT3 
and NFS
– Manage and store  files on a single server and 

its storage devices

• Multiple Server File system
– Manage and store files on multiple servers and 

their storage devices
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Problems

• Single resource is vulnerable

• Redundancy provides a safety net
– Disk level => RAID

– Storage level => Storage Replication

– TCP/IP level => SNDR

– File System level => CFS, MFS

– System level => Clustering systems
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Why MFS?

• Better Disaster Recovery

• Better RAS

• Better Scalability

• Better Performance

• Better Resources Utilization
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• UFS manages data on the local server’s storage 
devices

• NFS manages data on remote server’s storage 
devices

• Combine these two file systems to manage data on 
both local and remote servers storage devices

UFS + NFS
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• MFS is a kernel loadable module

• MFS is loaded on top of UFS and NFS

• Standard VFS interface

• No change to UFS and NFS

Building Block Approach



Page 11 of 

����������	
��
�����	����	��

File System Framework
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MFS Framework
User Applications

System Call Interface

File Operation System Calls File System Operation callsOther System calls
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• Transparent to users and applications

- No re-compilation or re-link needed

• Transparent to existing file structures

- Same pathname access

• Transparent to underlying file systems

- UFS, NFS

Transparency
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• Conventional Mount

- One directory, one file system

• MFS Mount

- One directory, two or more file systems

Mount Mechanism
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# mount –F mfs host:/ndir1/ndir2 /udir1/udir2

- First mount the NFS on a UFS directory

- Then  mount the MFS on top of UFS and NFS

" Existing UFS tree structure /udir1/udir2 
becomes a local copy of MFS

" Newly mounted host:/ndir1/ndir2 becomes a 
remote copy of MFS 

" Same mount options as NFS except new ‘-o 
nolock’ option and no ‘-o hard’ option

Mount Mechanism
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READ/WRITE Vnode Operation

• All VFS/vnode operations received  by MFS

• READ related operation: read, getattr,….
those operation only need to go to  local copy 
(UFS).

• WRITE related operation: write, setattr,…..
those operations go to both local (UFS) and remote 
(NFS) copy simultaneously (using threads)
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• Directory Level

- Mirror any UFS directory instead of entire UFS 
file system

- Directory A mirrored to Server A

- Directory B mirrored to Server B

• Block Level Update

- Only changed block is mirrored

Mirroring Granularity
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# /usr/lib/fs/mfs/mfsck mfs_dir

- After MFS mount succeeds, the local copy may 
not be identical to the remote copy. 

- Use mfsck (the MFS fsck) to synchronize them.

- The mfs_dir can be any directory under MFS 
mount point.

- Multiple mfsck commands can be invoked at the 
same time.

MFS mfsck Command
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# /usr/lib/fs/mfs/msync mfs_root_dir

- A daemon that synchronizes MFS pair after a 
remote MFS partner fails.

- Upon a write failure, MFS:

- Logs name of file to which the write operation failed

- Starts a heartbeat thread to verify the remote MFS 
server is back online

- Once the remote MFS server is back online, msync 
uses the log to sync missing files to remote server.

MFS msync Command
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Active/Active Configuration
Server Server

Application Application
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Application Application

Data B

UFS
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MFS uses UFS, NFS file record lock.

Locking is required for the active-active 
configuration.

Locking enables write-related vnode operations as 
atomic operations.

Locking is enabled by default.

Locking is not necessary in active-passive 
configuration.

MFS Locking Mechanism
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• Multiple locations of real-time, active data

• Full utilization of hardware/software investment                
- no expensive “spare tires”

• An efficient DR solution
- no cumbersome recovery procedures

• Greatly reduced network traffic
- go to your nearest server

• Scalable, pay as you grow

• Easy to deploy and manage

Summary
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