
Page 1 of

����������	
��
�����	����	��

John Wong
CTO

Twin Peaks Software Inc.
John.Wong@TwinPeakSoft.com

Mirror File System

A Multiple Server File System

Page 2 of

����������	
��
�����	����	��

Multiple Server File System

• Conventional File System -- UFS, EXT3
and NFS
– Manage and store files on a single server and

its storage devices

• Multiple Server File system
– Manage and store files on multiple servers and

their storage devices

Page 3 of

����������	
��
�����	����	��

Problems

• Single resource is vulnerable

• Redundancy provides a safety net
– Disk level => RAID

– Storage level => Storage Replication

– TCP/IP level => SNDR

– File System level => CFS, MFS

– System level => Clustering systems

Page 4 of

����������	
��
�����	����	��

Why MFS?

• Better Disaster Recovery

• Better RAS

• Better Scalability

• Better Performance

• Better Resources Utilization

Page 5 of

����������	
��
�����	����	��

Unix File System

Data

UFS

Application
1

Application
2

Kernel Space

User Space

Disk Driver

Page 6 of

����������	
��
�����	����	��

Application Application

NFS (Client
mount)

Application Application

Data

UFS

NFSD

Network File System

Page 7 of

����������	
��
�����	����	��

Application

NFS (Client
mount)

Application Application

Data B

UFS

NFSD

UFS | NFS

UFS

Data B

Page 8 of

����������	
��
�����	����	��

• UFS manages data on the local server’s storage
devices

• NFS manages data on remote server’s storage
devices

• Combine these two file systems to manage data on
both local and remote servers storage devices

UFS + NFS

Page 9 of

����������	
��
�����	����	��

Application Application

Data

UFS

Application Application

Data

UFS

Passive MFS Server

MFS = UFS + NFS
Active MFS Server

MFS

NFS

Page 10 of

����������	
��
�����	����	��

• MFS is a kernel loadable module

• MFS is loaded on top of UFS and NFS

• Standard VFS interface

• No change to UFS and NFS

Building Block Approach

Page 11 of

����������	
��
�����	����	��

File System Framework

����������	
���
�����
��
��

������	
�	��
����������������������������

������ ����!���

Optical
drive

Network

File System Operation calls

User Applications

System Call Interface

File Operation System
Calls Other System calls

re
ad

()

w
ri

te
 ()

op
en

 ()
cl

os
e

()

m
kd

ir
 ()

rm
di

r
()

lin
k

()

io
ct

l (
)

cr
ea

t (
)

ls
ee

k
()

m
ou

nt
 ()

um
ou

nt
 ()

S
ta

tf
s(

)

sy
nc

 ()

Vnode interfaces VFS interfaces

U
FS

 (2
)

N
FS

 (2
)

V
xF

S

H
S

FS

Q
FS

U
FS

 (1
)

N
FS

 (1
)

P
C

FS

P
C

FS

��	� ��	� ��	� ��	�

File System Operation calls

Page 12 of

����������	
��
�����	����	��

MFS Framework
User Applications

System Call Interface

File Operation System Calls File System Operation callsOther System calls

re
ad

 ()

w
ri

te
 ()

op
en

 ()

cl
os

e
()

m
kd

ir
 ()

rm
di

r
()

lin
k

()

io
ct

l (
)

cr
ea

t (
)

ls
ee

k
()

m
ou

nt
 ()

um
ou

nt
 ()

S
ta

tf
s(

)

sy
nc

 ()

Vnode interfaces VFS interfaces

U
FS

(2

)

N
FS

(2

)V
xF

S

H
S

FS

Q
FS

U
FS

 (1
)

N
FS

 (1
)

P
C

FS

P
C

FS

Network Optical drive
��	� ��	� ��	� ��	�

���

Vnode VFS interface

Page 13 of

����������	
��
�����	����	��

• Transparent to users and applications

- No re-compilation or re-link needed

• Transparent to existing file structures

- Same pathname access

• Transparent to underlying file systems

- UFS, NFS

Transparency

Page 14 of

����������	
��
�����	����	��

• Conventional Mount

- One directory, one file system

• MFS Mount

- One directory, two or more file systems

Mount Mechanism

Page 15 of

����������	
��
�����	����	��

mount –F mfs host:/ndir1/ndir2 /udir1/udir2

- First mount the NFS on a UFS directory

- Then mount the MFS on top of UFS and NFS

" Existing UFS tree structure /udir1/udir2
becomes a local copy of MFS

" Newly mounted host:/ndir1/ndir2 becomes a
remote copy of MFS

" Same mount options as NFS except new ‘-o
nolock’ option and no ‘-o hard’ option

Mount Mechanism

Page 16 of

����������	
��
�����	����	��

READ/WRITE Vnode Operation

• All VFS/vnode operations received by MFS

• READ related operation: read, getattr,….
those operation only need to go to local copy
(UFS).

• WRITE related operation: write, setattr,…..
those operations go to both local (UFS) and remote
(NFS) copy simultaneously (using threads)

Page 17 of

����������	
��
�����	����	��

• Directory Level

- Mirror any UFS directory instead of entire UFS
file system

- Directory A mirrored to Server A

- Directory B mirrored to Server B

• Block Level Update

- Only changed block is mirrored

Mirroring Granularity

Page 18 of

����������	
��
�����	����	��

/usr/lib/fs/mfs/mfsck mfs_dir

- After MFS mount succeeds, the local copy may
not be identical to the remote copy.

- Use mfsck (the MFS fsck) to synchronize them.

- The mfs_dir can be any directory under MFS
mount point.

- Multiple mfsck commands can be invoked at the
same time.

MFS mfsck Command

Page 19 of

����������	
��
�����	����	��

/usr/lib/fs/mfs/msync mfs_root_dir

- A daemon that synchronizes MFS pair after a
remote MFS partner fails.

- Upon a write failure, MFS:

- Logs name of file to which the write operation failed

- Starts a heartbeat thread to verify the remote MFS
server is back online

- Once the remote MFS server is back online, msync
uses the log to sync missing files to remote server.

MFS msync Command

Page 20 of

����������	
��
�����	����	��

Active/Active Configuration
Server Server

Application Application

Data A

UFS

Application Application

Data B

UFS

Active MFS Server

MFS MFS

Active MFS Server

NFS NFS

Page 21 of

����������	
��
�����	����	��

MFS uses UFS, NFS file record lock.

Locking is required for the active-active
configuration.

Locking enables write-related vnode operations as
atomic operations.

Locking is enabled by default.

Locking is not necessary in active-passive
configuration.

MFS Locking Mechanism

Page 22 of

����������	
��
�����	����	��

• Multiple locations of real-time, active data

• Full utilization of hardware/software investment
- no expensive “spare tires”

• An efficient DR solution
- no cumbersome recovery procedures

• Greatly reduced network traffic
- go to your nearest server

• Scalable, pay as you grow

• Easy to deploy and manage

Summary

Page 23 of

����������	
��
�����	����	��

MFS

Application Application

Data A

Application Application

Data B

MFS MFS

